61,000 research outputs found

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified

    Wavelet based stereo images reconstruction using depth images

    Get PDF
    It is believed by many that three-dimensional (3D) television will be the next logical development toward a more natural and vivid home entertaiment experience. While classical 3D approach requires the transmission of two video streams, one for each view, 3D TV systems based on depth image rendering (DIBR) require a single stream of monoscopic images and a second stream of associated images usually termed depth images or depth maps, that contain per-pixel depth information. Depth map is a two-dimensional function that contains information about distance from camera to a certain point of the object as a function of the image coordinates. By using this depth information and the original image it is possible to reconstruct a virtual image of a nearby viewpoint by projecting the pixels of available image to their locations in 3D space and finding their position in the desired view plane. One of the most significant advantages of the DIBR is that depth maps can be coded more efficiently than two streams corresponding to left and right view of the scene, thereby reducing the bandwidth required for transmission, which makes it possible to reuse existing transmission channels for the transmission of 3D TV. This technique can also be applied for other 3D technologies such as multimedia systems. In this paper we propose an advanced wavelet domain scheme for the reconstruction of stereoscopic images, which solves some of the shortcommings of the existing methods discussed above. We perform the wavelet transform of both the luminance and depth images in order to obtain significant geometric features, which enable more sensible reconstruction of the virtual view. Motion estimation employed in our approach uses Markov random field smoothness prior for regularization of the estimated motion field. The evaluation of the proposed reconstruction method is done on two video sequences which are typically used for comparison of stereo reconstruction algorithms. The results demonstrate advantages of the proposed approach with respect to the state-of-the-art methods, in terms of both objective and subjective performance measures

    Paper-based Mixed Reality Sketch Augmentation as a Conceptual Design Support Tool

    Get PDF
    This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this technology. These interviews are the main contribution of this paper. Several interesting applications were determined, suggesting possible usage in a wide range of domains. Paper-based sketching, mixed reality and sketch augmentation techniques complement each other, and the combination results in a highly intuitive interface

    Using Augmented Reality as a Medium to Assist Teaching in Higher Education

    Get PDF
    In this paper we describe the use of a high-level augmented reality (AR) interface for the construction of collaborative educational applications that can be used in practice to enhance current teaching methods. A combination of multimedia information including spatial three-dimensional models, images, textual information, video, animations and sound, can be superimposed in a student-friendly manner into the learning environment. In several case studies different learning scenarios have been carefully designed based on human-computer interaction principles so that meaningful virtual information is presented in an interactive and compelling way. Collaboration between the participants is achieved through use of a tangible AR interface that uses marker cards as well as an immersive AR environment which is based on software user interfaces (UIs) and hardware devices. The interactive AR interface has been piloted in the classroom at two UK universities in departments of Informatics and Information Science

    Machinima interventions: innovative approaches to immersive virtual world curriculum integration

    Get PDF
    The educational value of Immersive Virtual Worlds (IVWs) seems to be in their social immersive qualities and as an accessible simulation technology. In contrast to these synchronous applications this paper discusses the use of educational machinima developed in IVW virtual film sets. It also introduces the concept of media intervention, proposing that digital media works best when simply developed for deployment within a blended curriculum to inform learning activity, and where the media are specifically designed to set challenges, seed ideas, or illustrate problems. Machinima, digital films created in IVWs, or digital games offer a rich mechanism for delivering such interventions. Scenes are storyboarded, constructed, shot and edited using techniques similar to professional film production, drawing upon a cast of virtual world avatars controlled through a human–computer interface, rather than showing real‐life actors. The approach enables academics or students to make films using screen capture software and desktop editing tools. In student‐generated production models the learning value may be found in the production process itself. This paper discusses six case studies and several themes from research on ideas for educational machinima including: access to production; creativity in teaching and learning; media intervention methodology; production models; reusability; visualisation and simulation
    corecore