282 research outputs found

    El reensamblaje y la reposición virtual de un recipiente de beber fragmentado

    Full text link
    [EN] A key issue in the study of cultural assets is theiroften fragmentary condition. This causes serious problems and questions regarding theirstudy and presentation. Pottery fragments are the most numerous findings in every excavation. Furthermore, pottery plays an essential role for the reconstruction of the past, since it providesinformation for all aspects of life (private, public, religion, death, economy, society, trade,etc.). Therefore,a thorough study and presentation of pottery fragments contribute to a better knowledge of the past.The focus of this work is the visualisation of an ancient Greek drinking vase, a kantharos, which was unearthed during the excavations at the settlement of Karabournaki (ancient Therme) in the area of Thessaloniki (Greece). It dates to the Archaic period (7th-6thc. B.C.) and it was found in fragments among the settlement's architectural remains. The vase is of great archaeological significance due to its peculiarities in terms of shape, decoration and function. Therefore,its digital completion and 3D reconstruction willcontribute to its betterstudy and scholarly publication along with a general contribution to the field of pottery studies.We discuss on the 3D digitisation of the kantharosfragments that werebased onStructure from Motion/Multiple View Stereovision (SfM/MVS) and a custom automated data collection system. A detailed description of the digitisation pipeline is given along with details related to the quality of the 3D digital replicas of the sherds. Furthermore, we presentour manual virtual reassembly and reconstruction pipelineof the kantharosby describing the challenges, issues and ambiguities discovered while analysing the geometrical features of each sherd. A number of photorealistic reconstruction visualisations of the artefact are presented in order to question the applicability of the solution for the actual reconstruction[ES] Una cuestión clave en el estudio de los bienes culturales es su condición amenudo fragmentaria. Estacausa problemas y serias dudas en cuanto a su estudio y presentación. Los fragmentos de cerámica son los hallazgos más frecuentes en una excavación. Además, la cerámica juega un papel esencial para la reconstrucción del pasado, ya que proporciona información acerca de todos los aspectos de la vida (privada, pública, la religión, la muerte, la economía, la sociedad, el comercio, etc.). Por lo tanto, un estudio a fondo y la presentación de los fragmentos de cerámica pueden conducir a un mejor conocimiento del pasado.El objetivo de este trabajo es la visualización de un recipiente griego para beber, un Kantharo (recipiente para bebidas) descubierto en las excavaciones del asentamiento de Karabournaki (antigua Therme) en la zona de Tesalónica (Grecia). El vaso se fecha en el periodo arcaico (VII-VI a.C.) y sus fragmentos se encontraronentre los restos arquitectónicos del asentamiento. El recipiente es de gran importancia arqueológica debido a sus peculiaridades en cuanto a la forma, la decoración y su función. Por lo tanto, su acabado digital y la reconstrucción 3D contribuirán a su mejor estudio y a la publicación además de una aportación genérica enel campo de los estudios de cerámica.Se discute sobre la digitalización en 3D de losfragmentos del kantharos, que estábasadoen StructurefromMotion/Multiple View Stereovision(SfM/MVS) y un sistema automatizado de recogida de datos a medida. Se ofrece una descripción detallada del proceso de digitalización junto con los detalles relacionados con la calidad de las réplicas digitales en 3D de los pedazos. Además, presentamos nuestro manual de reensamblaje virtual y el proceso de reconstrucción virtual del kantharos,mediante la descripción delos desafíos, de los problemas y de las ambigüedades descubiertas durante el análisis de las características geométricas de cada fragmento. Se presentanvisualizaciones fotorrealistas de la reconstrucción del artefacto con el fin de cuestionar la aplicabilidad de la solución a la reconstrucción realThis work was implemented as a Case Study within the framework of the COST-Action TD 1201: Colour and Space in Cultural Heritage (COSCH). COST is supported by the EU Framework Programme Horizon 2020.Tsiafaki, D.; Koutsoudis, A.; Arnaoutoglou, F.; Michailidou, N. (2015). Virtual reassembly and completion of a fragmentary drinking vessel. Virtual Archaeology Review. 7(15):67-76. doi:10.4995/var.2016.5910.SWORD677671

    Revisión de los métodos computerizados para la reconstrucción de fragmentos arqueológicos de cerámica

    Full text link
    [ES] Las cerámicas son los hallazgos más numerosos encontrados en las excavaciones arqueológicas; a menudo se usan para obtener información sobre la historia, la economía y el arte de un sitio. Los arqueólogos rara vez encuentran jarrones completos; en general, están dañados y en fragmentos, a menudo mezclados con otros grupos de cerámica.El análisis y la reconstrucción de fragmentos se realiza por un operador experto mediante el uso del método manual tradicional. Los artículos revisados proporcionaron evidencias de que el método tradicional no es reproducible, no es repetible, consume mucho tiempo y sus resultados generan grandes incertidumbres. Con el objetivo de superar los límites anteriores, en los últimos años, los investigadores han realizado esfuerzos para desarrollar métodos informáticos que permitan el análisis de fragmentos arqueológicos de cerámica, todo ello destinado a su reconstrucción. Para contribuir a este campo de estudio, en este artículo, se presenta un análisis exhaustivo de las publicaciones disponibles más importantes hasta finales de 2019. Este estudio, centrado únicamente en fragmentos de cerámica, se realiza mediante la recopilación de artículos en inglés de la base de datos Scopus, utilizando las siguientes palabras clave: "métodos informáticos en arqueología", "arqueología 3D", "reconstrucción 3D", "reconocimiento y reconstrucción automática de características", "restauración de reliquias en forma de cerámica ". La lista se completa con referencias adicionales que se encuentran a través de la lectura de documentos seleccionados. Los 53 trabajos seleccionados se dividen en tres períodos de tiempo. Según una revisión detallada de los estudios realizados, los elementos clave de cada método analizado se enumeran en función de las herramientas de adquisición de datos, las características extraídas, los procesos de clasificación y las técnicas de correspondencia. Finalmente, para superar las brechas reales, se proponen algunas recomendaciones para futuras investigaciones.[EN] Potteries are the most numerous finds found in archaeological excavations; they are often used to get information about the history, economy, and art of a site. Archaeologists rarely find complete vases but, generally, damaged and in fragments, often mixed with other pottery groups. By using the traditional manual method, the analysis and reconstruction of sherds are performed by a skilled operator. Reviewed papers provided evidence that the traditional method is not reproducible, not repeatable, time-consuming and its results have great uncertainties. To overcome the aforementioned limits, in the last years, researchers have made efforts to develop computer-based methods for archaeological ceramic sherds analysis, aimed at their reconstruction. To contribute to this field of study, in this paper, a comprehensive analysis of the most important available publications until the end of 2019 is presented. This study, focused on pottery fragments only, is performed by collecting papers in English by the Scopus database using the following keywords: “computer methods in archaeology", "3D archaeology", "3D reconstruction", "automatic feature recognition and reconstruction", "restoration of pottery shape relics”. The list is completed by additional references found through the reading of selected papers. The 53 selected papers are divided into three periods of time. According to a detailed review of the performed studies, the key elements of each analyzed method are listed based on data acquisition tools, features extracted, classification processes, and matching techniques. Finally, to overcome the actual gaps some recommendations for future researches are proposed.Highlights:The traditional manual method for reassembling sherds is very time-consuming and costly; it also requires a great deal effort from skilled archaeologists in repetitive and routine activities.Computer-based methods for archaeological ceramic sherds reconstruction can help archaeologists in the above-mentioned repetitive and routine activities.In this paper, the state-of-the-art computer-based methods for archaeological ceramic sherds reconstruction are reviewed, and some recommendations for future researches are proposed.Eslami, D.; Di Angelo, L.; Di Stefano, P.; Pane, C. (2020). Review of computer-based methods for archaeological ceramic sherds reconstruction. Virtual Archaeology Review. 11(23):34-49. https://doi.org/10.4995/var.2020.13134OJS34491123Andrews, S., & Laidlaw, D. H. (2002). Toward a framework for assembling broken pottery vessels. In Proceedings of the National Conference on Artificial Intelligence, (August 2003), (pp. 945-946).Banterle, F., Itkin, B., Dellepiane, M., Wolf, L., Callieri, M., Dershowitz, N., & Scopigno, R. (2017). VASESKETCH: Automatic 3D Representation of Pottery from Paper Catalog Drawings. In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 1(693548), (pp. 683-690). https://doi.org/10.1109/ICDAR.2017.117Belenguer, C. S., & Vidal, E. V. (2012). Archaeological fragment characterization and 3D reconstruction based on projective GPU depth maps. In Proceedings of the 2012 18th International Conference on Virtual Systems & Multimedia, VSMM 2012: Virtual Systems in the Information Society, (pp. 275-282). https://doi.org/10.1109/VSMM.2012.6365935Blender. (2018). An open-source 3D graphics and animation software. Retrieved from https://www.blender.orgBrown, B. J., Toler-Franklin, C., Nehab, D., Burns, M., Dobkin, D., Vlachopoulos, A., Weyrich, T. (2008). A system for high-volume acquisition and matching of fresco fragments: Reassembling Theran wall paintings. ACM Transactions on Graphics, 27(3). https://doi.org/10.1145/1360612.1360683Cao, Y., & Mumford, D. (2002). Geometric Structure Estimation of Axially Symmetric Pots from Small Fragments. In Proceedings of the signal processing, pattern recognition and applications, IASTED, Crete, Greece, June 25-28, 2002, (pp. 92-97).Cohen, F., Zhang, Z., & Jeppson, P. (2010). Virtual reconstruction of archaeological vessels using convex hulls of surface markings. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, (pp. 55-61). http://dx.doi.org/10.1109/CVPRW.2010.5543528Cohen, F., Zhang, Z., & Liu, Z. (2016). Mending broken vessels a fusion between color markings and anchor points on surface breaks. Multimedia Tools and Applications, 75(7), 3709-3732. https://doi.org/10.1007/s11042-014-2190-0Cooper, D. B., Willis, A., Andrews, S., Baker, J., Cao, Y., Han, D., … others. (2001). Assembling virtual pots from 3D measurements of their fragments. In Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, (pp. 241-254). https://doi.org/10.1145/584993.585032Di Angelo, L., Di Stefano, P., Morabito, A. E., & Pane, C. (2018). Measurement of constant radius geometric features in archaeological pottery. Measurement: Journal of the International Measurement Confederation, 124 (March), 138-146. https://doi.org/10.1016/j.measurement.2018.04.016Di Angelo, L., Di Stefano, P., & Pane, C. (2018). An automatic method for pottery fragments analysis. Measurement: Journal of the International Measurement Confederation, 128, 138-148. https://doi.org/10.1016/j.measurement.2018.06.008Di Angelo, Luca, Di Stefano, P., & Pane, C. (2017). Automatic dimensional characterization of pottery. Journal of Cultural Heritage, 26, 118-128. https://doi.org/10.1016/j.culher.2017.02.003Fragkos, S., Tzimtzimis, E., Tzetzis, D., Dodun, O., & Kyratsis, P. (2018). 3D laser scanning and digital restoration of an archaeological find. MATEC Web of Conferences, 178. https://doi.org/10.1051/matecconf/201817803013Funkhouser, T., Shin, H., Toler-Franklin, C., Castañeda, A. G., Brown, B., Dobkin, D., Weyrich, T. (2011). Learning how to match fresco fragments. Journal on Computing and Cultural Heritage, 4(2). https://doi.org/10.1145/2037820.2037824Halir, R., & Menard, C. (1996). Diameter estimation for archaeological pottery using active vision. In Proceedings of the 20th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR) on Pattern Recognition 1996, (pp. 251-261).Halir, R., & Flusser, J. (1997). Estimation of profiles of sherds of archaeological pottery. In Proceedings of the of the Czech Pattern Recognition Workshop (CPRW'97), Czech Republic, February 1997, 1-5, (pp. 126-130).Halir, R. (1999). An Automatic Estimation Of The Axis Of Rotation Of Fragments Of Archaeological Pottery: A Multi-Step Model-Based Approach. In Proceedings of the 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media (WSCG '99) https://semanticscholar.org/0248/ae5a8dca3d2c6bfff282ce481a5625d32362Hall, N. S., & Laflin, S. (1984). A computer aided design technique for pottery profiles. In Computer applications in Archaeology, (pp. 178-188). Computer Center, University of Birmingham Birmingham. Retrieved from https://www.bcin.ca/bcin/detail.app?id=40524Han, D., & Hahn, H. S. (2014). Axis estimation and grouping of rotationally symmetric object segments. Pattern Recognition, 47(1), 296-312. https://doi.org/10.1016/j.patcog.2013.06.022Hlavackova-Schindler, K., Kampel, M., & Sablatnig, R. (2001). Fitting of a Closed Planar Curve Representing a Profile of an Archaeological Fragment. In Proceedings VAST 2001 Virtual Reality, Archeology, and Cultural Heritage, (pp. 263-269). https://doi.org/10.1145/585031.585034Huang, Q. X., Flöry, S., Gelfand, N., Hofer, M., & Pottmann, H. (2006). Reassembling fractured objects by geometric matching. ACM SIGGRAPH 2006 Papers, SIGGRAPH '06, (May), (pp. 569-578). https://doi.org/10.1145/1179352.1141925Igwe, P. C., & Knopf, G. K. (2006). 3D object reconstruction using geometric computing. Geometric Modeling and Imaging New Trends, 9-14. https://doi.org/10.1109/GMAI.2006.1Kalasarinis, I., & Koutsoudis, A. (2019). Assisting pottery restoration procedures with digital technologies. International Journal of Computational Methods in Heritage Science, 3(1), 20-32. https://doi.org/10.4018/ijcmhs.2019010102Kampel, M., & Sablatnig, R. (2003). Profile-based Pottery Reconstruction. In IEEE Proceeding of Conference on Computer Vision and Pattern Recognition Workshops, Wisconsin, June, (pp. 1-6). https://doi.org/10.1109/CVPRW.2003.10007Kampel, M, & Mara, H. (2005). Robust 3D reconstruction of archaeological pottery based on concentric circular rills. In Proceedings of the Sixth International. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS'05), Montreux, Switzerland, (pp. 14-20). Retrieved from https://semanticscholar.org/43df/9b3c6fef5aa54964bdc4825a86cc4e9f4531Kampel, M., & Sablatnig, R. (2003). An automated pottery archival and reconstruction system. Journal of Visualization and Computer Animation, 14(3), 111-120. https://doi.org/10.1002/vis.310Kampel, M., & Sablatnig, R. (2004). 3D Puzzling of Archeological Fragments. In Proceedings of 9th Computer Vision Winter Workshop, (February), (pp. 31-40). Retrieved from https://cvl.tuwien.ac.at/wp-content/uploads/2014/12/cvww041Karasik, A., & Smilansky, U. (2011). Computerized morphological classification of ceramics. Journal of Archaeological Science, 38(10), 2644-2657. https://doi.org/10.1016/j.jas.2011.05.023Kashihara, K. (2012). Three-dimensional reconstruction of artifacts based on a hybrid genetic algorithm. In IEEE International Conference on Systems, Man and Cybernetics, (pp. 900-905). https://doi.org/10.1109/ICSMC.2012.6377842Kashihara, K. (2017). An intelligent computer assistance system for artifact restoration based on genetic algorithms with plane image features. International Journal of Computational Intelligence and Applications, 16(3), 1-15. https://doi.org/10.1142/S1469026817500213Kleber, F., & Sablatnig, R. (2009). A survey of techniques for document and archaeology artifact reconstruction. In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, (March 2014), (pp. 1061-1065). https://doi.org/10.1109/ICDAR.2009.154Kotoula, E. (2016). Semiautomatic fragments matching and virtual reconstruction: a case study on ceramics. International Journal of Conservation Science, 7(1), 71-86. Retrieved from http://eprints.lincoln.ac.uk/id/eprint/31035/Lucena, M., Martínez-Carrillo, A. L., Fuertes, J. M., Javier Carrascosa Malagón, F., & Ruiz Rodríguez, A. (2016). Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications, 75(7), 3677-3691. https://doi.org/10.1007/s11042-014-2063-6Maiza, C., & Gaildrat, V. (2005). Automatic classification of archaeological potsherds. In Proceedings of the 8th International Conference on Computer Graphics and Artificial Intelligence, Limoges, France, May 11-12, 2005, (pp. 135-147). https://semanticscholar.org/3c95/82c3e562b44e7d61dc0fd3487ea3dc977ff3Mara, H., Kampel, M., & Sablatnig, R. (2002). Preprocessing of 3D-Data for Classification of Archaeological Fragments in an Automated System. In Proceedings of the 26th Workshop of the Austrian Association for Pattern Recognition, Vision with Non-Traditional Sensors, (ÖAGM/AAPR), Graz, Austria, 10-11 September 2002, (pp. 257-264). https://doi.org/10.1.1.15.748Mara, H., & Sablatnig, R. (2006). The orientation of fragments of rotationally symmetrical 3D-shapes for archaeological documentation. In Proceedings - Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006, (June), (pp. 1064-1071). https://doi.org/10.1109/3DPVT.2006.105Melero, F. J., Torres, J. C., & Leon, A. (2003). On the interactive 3d reconstruction of Iberian vessels. In 4th International Symposium on Virtual Reality, Archaeology, and Intelligent Cultural Heritage, VAST, 3, (pp. 71-78). http://dx.doi.org/10.2312/VAST/VAST03/071-078Papaioannou, G., Karabassi, E. a., & Theoharis, T. (2000). Automatic Reconstruction of Archaeological Finds-A Graphics Approach. In International Conference on Computer Graphics and Artificial Intelligence, (March), (pp. 117-125). Retrieved from https://semanticscholar.org/6a3c/7ec8f544bbfb83174d868cd406eaaf40f438Papaioannou, G., Karabassi, E. A., & Theoharis, T. (2002). Reconstruction of three-dimensional objects through the matching of their parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 114-124. https://doi.org/10.1109/34.982888Pulli, K. (1999). Multiview registration for large data sets. In Proceedings of Second International Conference on 3D Digital Imaging and Modeling, Ottawa, ON, Canada, 4-8 December 1999, (pp. 160-168). http://doi.org/10.1109/IM.1999.805346Rasheed, N. A., & Nordin, J. (2015a). A Survey of Computer Methods in Reconstruction of 3D Archaeological Pottery Objects. International Journal of Advanced Research, 3(3), 712-714. Retrieved from https://academia.edu.documents/45540231Rasheed, N. A., & Nordin, M. J. (2014). A polynomial function in the automatic reconstruction of fragmented objects. Journal of Computer Science, 10(11), 2339-2348. https://doi.org/10.3844/jcssp.2014.2339.2348Rasheed, N. A., & Nordin, M. J. (2015b). Archaeological fragments classification based on RGB color and texture features. Journal of Theoretical and Applied Information Technology, 76(3), 358-365. Retrieved from http://repository.uobabylon.edu.iq/papers/publication.aspx?pubid=6746Rasheed, N. A., & Nordin, M. J. (2018). Classification and reconstruction algorithms for the archaeological fragments. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.09.019Rasheed, N. A., Nordin, M. J., Dakheel, A. H., Nados, W. L., & Maaroof, M. K. A. (2017). Classification archaeological fragments into groups. Research Journal of Applied Sciences, Engineering, and Technology, 14(9), 324-333. https://doi.org/10.19026/rjaset.14.5072Sablatnig, R., & Menard, C. (1997). 3D Reconstruction of Archaeological Pottery using Profile Primitives. In Proceedings of I International Workshop on Synthetic-Natural Hybrid Coding and Three-Dimensional Imaging, (pp. 93-96).Sablatnig, R., Menard, C., & Kropatseh, W. (1998). Classification of archaeological fragments using a description language. In Proceedings of European Signal Processing Conference, (Eusipco '98), (pp. 1097-1100), 1998.Sakpere, W. (2019). 3D Reconstruction of Archaeological Pottery from Its Point Cloud. In Proceedings of Iberian Conference on Pattern Recognition and Image Analysis, (pp. 125-136). https://doi.org/10.1007/978-3-030-31332-6_11Shin, H., Doumas, C., Funkhouser, T., Rusinkiewicz, S., Steiglitz, K.,Vlachopoulos, & Weyrich, T. (2010). Analyzing Fracture Patterns in Theran Wall Paintings. In Proceedings of the 11th International Symposium on Virtual Reality, Archaeology - VAST, (pp. 71-78). https://doi.org/10.2312/VAST/VAST10/071-078Son, K., Almeida, E. B., & Cooper, D. B. (2013). Axially symmetric 3D pots configuration system using the axis of symmetry and break curve. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (pp. 257-264). https://doi.org/10.1109/CVPR.2013.40Stamatopoulos, M. I., & Anagnostopoulos, C.-N. (2016). 3D digital reassembling of archaeological ceramic pottery fragments based on their thickness profile. The Computing Research Repository (CoRR). Retrieved from https://arxiv.org/abs/1601.05824Toler-Franklin, C., Funkhouser, T., Rusinkiewicz, S., Brown, B., & Weyrich, T. (2010). Multi-Feature Matching of Fresco Fragments. ACM Transactions on Graphics, 29(6), 1-12. https://doi.org/10.1145/1882261.1866207Üçoluk, G., & Hakki Toroslu, I. (1999). Automatic reconstruction of broken 3-D surface objects. Computers and Graphics, 23(4), 573-582. https://doi.org/10.1016/S0097-8493(99)00075-8Vendrell-Vidal, E., & Sánchez-Belenguer, C. (2014). A Discrete Approach for Pairwise Matching of Archaeological Fragments. Journal on Computing and Cultural Heritage, 7(3), 1-19. https://doi.org/10.1145/2597178Willis, A., Orriols, X., & Cooper, D. B. (2003). Accurately Estimating Sherd 3D Surface Geometry with Application to Pot Reconstruction. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, (16-22 June 2003), Madison, Wisconsin, USA (pp. 1-7). https://doi.org/10.1109/CVPRW.2003.10014Willis, A. R., & Cooper, D. B. (2004). Bayesian assembly of 3D axially symmetric shapes from fragments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, (pp. 82-89). https://doi.org/10.1109/cvpr.2004.1315017Zhou, Mingquam, Geng, G., Wu, Z., Zheng, X., Shui, W., Lu, K., & Gao, Y. (2007). A system for re-assembly of fragment objects and computer-aided restoration of cultural relics. Virtual Retrospect 2007, 3, 21-27. Retrieved from http://hal.univ-savoie.fr/ENIB/hal-01765241v1Zhou, Mingquan, Geng, G., Wu, Z., & Shui, W. (2010). A Virtual Restoration System for Broken Pottery. In Proceedings of the CAA Conference 37th Computer applications and quantitative methods in archaeology, Williamsburg, VA, USA, 22-26 March 2009; (pp. 391-396). Retrieved from https://semanticscholar.org/87b5/aa5c7710806677abbedb4e43f6134e05304

    Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    This volume presents a selection of the best papers presented at the forty-first annual Conference on Computer Applications and Quantitative Methods in Archaeology. The theme for the conference was "Across Space and Time", and the papers explore a multitude of topics related to that concept, including databases, the semantic Web, geographical information systems, data collection and management, and more

    Natural Sciences in Archaeology and Cultural Heritage

    Get PDF
    A Special Issue of the international journal Sustainability under the section Sustainability of Culture & Heritage has been made, entitled Natural Sciences in Archaeology and Cultural Heritage. The bridge between science/technology and the humanities (archaeology, anthropology, history of art, and cultural heritage) has formed a well-established interdisciplinary subject with several sub-disciplines; it is growing exponentially, spurred by the fast development of technology in other fields (space exploration, medical, military, and industrial applications). On the other hand, art and culture struggle to survive due to neglect, lack of funding, or the dangers of events such as natural disasters and war. This volume strengthens and exerts the documentation of the sustainability of the issue that arises from the outcome of resulting research and the application of such a duality link. The sustainable dimension emerges from society, education, and economics through the impact of cultural growth, all of which produce a balanced society, in which prosperity, harmony, and development are merged at a sustainable local/regional/national/social level. A wide range of subjects linking the applied natural sciences with archaeology and the cultural heritage of innovative research and applications are presented in this volume

    3D reconstructing of vessels using "CGView"

    Get PDF
    El objetivo del proyecto es hacer una reconstrucción virtual de una cerámica original en 3 dimensiones usando el software de visualización gráfica CGView. En realidad se trata de hacer un plugin de CGView para visualizar una vasija en 3D desde su perfil. Uno de los problemas de representación automática de vasijas es la infinita variedad de tipos de cerámicas que existen y las particularidades que cada una de ellas puede mostrar. Las piezas son hechas a mano, y esto hace que tengan unas características únicas, y que sea realmente complejo para los arqueólogos representarlas. Por lo tanto, en base a esto, se han tenido en cuenta las siguientes premisas: - La vasija es completamente circular. - No se representan irregularidades particulares. - Se ignora la decoración. Estas premisas disminuyen en gran medida la complejidad del proyecto, y hacen que las cerámicas se puedan clasificar con mayor facilidad.Ingeniería en Informátic

    AUTOMATIC GENERATION OF ANCIENT POTTERY PROFILES USING CAD SOFTWARE

    Full text link

    3D Pedestrian Tracking and Virtual Reconstruction of Ceramic Vessels Using Geometric and Color Cues

    Get PDF
    Object tracking using cameras has many applications ranging from monitoring children and the elderly, to behavior analysis, entertainment, and homeland security. This thesis concentrates on the problem of tracking person(s) of interest in crowded scenes (e.g., airports, train stations, malls, etc.), rendering their locations in time and space along with high quality close-up images of the person for recognition. The tracking is achieved using a combination of overhead cameras for 3D tracking and a network of pan-tilt-zoom (PTZ) cameras to obtain close-up frontal face images. Based on projective geometry, the overhead cameras track people using salient and easily computable feature points such as head points. When the obtained head point is not accurate enough, the color information of the head tops across subsequent frames is integrated to detect and track people. To capture the best frontal face images of a target across time, a PTZ camera scheduling is proposed, where the 'best' PTZ camera is selected based on the capture quality (as close as possible to frontal view) and handoff success (response time needed by the newly selected camera to move from current to desired state) probabilities. The experiments show the 3D tracking errors are very small (less than 5 cm with 14 people crowding an area of around 4 m2) and the frontal face images are captured effectively with most of them centering in the frames. Computational archaeology is becoming a success story of applying computational tools in the reconstruction of vessels obtained from digs, freeing the expert from hours of intensive labor in manually stitching shards into meaningful vessels. In this thesis, we concentrate on the use of geometric and color information of the fragments for 3D virtual reconstruction of broken ceramic vessels. Generic models generated by the experts as a rendition of what the original vessel may have looked like are also utilized. The generic models need not to be identical to the original vessel, but are within a geometric transformation of it in most of its parts. The markings on the 3D surfaces of fragments and generic models are extracted based on their color cues. Ceramic fragments are then aligned against the corresponding generic models based on the geometric relation between the extracted markings. The alignments yield sub-scanner resolution fitting errors.Ph.D., Electrical Engineering -- Drexel University, 201

    Across Space and Time Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    The present volume includes 50 selected peer-reviewed papers presented at the 41st Computer Applications and Quantitative Methods in Archaeology Across Space and Time (CAA2013) conference held in Perth (Western Australia) in March 2013 at the University Club of Western Australia and hosted by the recently established CAA Australia National Chapter. It also hosts a paper presented at the 40th Computer Applications and Quantitative Methods in Archaeology (CAA2012) conference held in Southampton

    Food and balms: combined botanical and chemical studies from funerary and domestic contexts

    Get PDF
    Questo studio consiste nell’analisi interdisciplinare di micro- e macro-resti vegetali provenienti da vari contesti archeologici e nell’identificazione dei rispettivi profili chimici. Comunemente, l’analisi di micro-resti quali granuli pollinici, fitoliti e NNPs (palinomorfi nonpollinici), e macro-resti vegetali, come semi e legni, avviene per mezzo di indagini microscopiche che permettono di riconoscere la morfologia e tassonomia della pianta di provenienza. Circa l’analisi dei residui dei materiali amorfi, la loro caratterizzazione si basa su biomarcatori, ossia molecole organiche che servono da indicatori chimici, rivelandone l'origine. Combinando i due approcci, il materiale per la ricerca è stato selezionato basandosi sullo stato di conservazione e sulla disponibilità. Inoltre, dato che il trattamento analitico di manufatti attraverso protocolli di laboratorialo è ridotto al necessario per limitare alterazioni e garantire usi futuri a fini di ricerca o musealizzazione, i campioni sono stati preparati secondo i metodi strumentali appropriati. In rellazione alle delle esigenze specifiche del materiale analizzato, ciascun campione è stato studiato mediante la microscopia ottica, stereo-microscopia e microscopia elettronica a scansione (SEM). Per l'analisi chimica, il residuo organico visibile è stato sottoposto a spettroscopia di trasformata di Fourier a riflettanza totale attenuata non distruttiva (ATR-FT-IR) e spettrometria di massa di gascromatografia a pirolisi minimamente distruttiva (Py-GC/MS). I residui organici recuperati da vasi di ceramica, identificati come contenitori di offerte alimentari, sono stati caratterizzati mediante gascromatografia- spettrometria di massa (GC/MS). Qualora pertinente, la frazione inorganica dei campioni è stata caratterizzata mediante SEM accoppiata con spettrometria a raggi X a dispersion di energia (SEM-EDS) e d diffrattometria a raggi X (XRD). Ciascuna tecnica è stata impiegata a seconda delle esigenze diversificate di ogni caso di studio. I dati acquisiti sono stati contestualizzati alle precedenti condizioni archeologiche e ambientali, nonché dei materiali naturali disponibili, consentendo un'interpretazione completa dei resti vegetali archeologici

    Marsala\u27s Hinterland: The Evolution of Roman Settlement in Western Sicily

    Get PDF
    This thesis comprises a study of the evolution of human settlement in the hinterland of Marsala, in western Sicily, during the island\u27s period of Roman control. The years between the third century BCE–eighth century CE were a period of frequent and significant change. Paradoxically, they are also a period during which Sicily is comparatively little known. A variety of factors have conspired to minimize scholarly attention on Roman Sicily, and as such, the ways in which the island responded to events in the wider Roman Mediterranean. Among the aims of the Marsala Hinterland Survey—an archaeological survey project active between 2007–2010—was to redress this imbalance. On the basis of ceramic materials collected during surface survey, and analyzed using Geographical Information Systems software, I reconstruct the history of settlement in the area of the survey\u27s activity. This history, I go on to demonstrate, is characterized by an impressive degree of continuity, both in respect of the location and distribution of settlement. I locate the reasons for this continuity, and the moments of its occasional rupture, in the changing relationship between native Sicilian and Roman interests, especially as they relate to the production and shipment of grain throughout the Roman empire
    corecore