474,399 research outputs found

    VITON: An Image-based Virtual Try-on Network

    Full text link
    We present an image-based VIirtual Try-On Network (VITON) without using 3D information in any form, which seamlessly transfers a desired clothing item onto the corresponding region of a person using a coarse-to-fine strategy. Conditioned upon a new clothing-agnostic yet descriptive person representation, our framework first generates a coarse synthesized image with the target clothing item overlaid on that same person in the same pose. We further enhance the initial blurry clothing area with a refinement network. The network is trained to learn how much detail to utilize from the target clothing item, and where to apply to the person in order to synthesize a photo-realistic image in which the target item deforms naturally with clear visual patterns. Experiments on our newly collected Zalando dataset demonstrate its promise in the image-based virtual try-on task over state-of-the-art generative models

    Virtual Accessory Try-On via Keypoint Hallucination

    Full text link
    The virtual try-on task refers to fitting the clothes from one image onto another portrait image. In this paper, we focus on virtual accessory try-on, which fits accessory (e.g., glasses, ties) onto a face or portrait image. Unlike clothing try-on, which relies on human silhouette as guidance, accessory try-on warps the accessory into an appropriate location and shape to generate a plausible composite image. In contrast to previous try-on methods that treat foreground (i.e., accessories) and background (i.e., human faces or bodies) equally, we propose a background-oriented network to utilize the prior knowledge of human bodies and accessories. Specifically, our approach learns the human body priors and hallucinates the target locations of specified foreground keypoints in the background. Then our approach will inject foreground information with accessory priors into the background UNet. Based on the hallucinated target locations, the warping parameters are calculated to warp the foreground. Moreover, this background-oriented network can also easily incorporate auxiliary human face/body semantic segmentation supervision to further boost performance. Experiments conducted on STRAT dataset validate the effectiveness of our proposed method

    Single Stage Multi-Pose Virtual Try-On

    Full text link
    Multi-pose virtual try-on (MPVTON) aims to fit a target garment onto a person at a target pose. Compared to traditional virtual try-on (VTON) that fits the garment but keeps the pose unchanged, MPVTON provides a better try-on experience, but is also more challenging due to the dual garment and pose editing objectives. Existing MPVTON methods adopt a pipeline comprising three disjoint modules including a target semantic layout prediction module, a coarse try-on image generator and a refinement try-on image generator. These models are trained separately, leading to sub-optimal model training and unsatisfactory results. In this paper, we propose a novel single stage model for MPVTON. Key to our model is a parallel flow estimation module that predicts the flow fields for both person and garment images conditioned on the target pose. The predicted flows are subsequently used to warp the appearance feature maps of the person and the garment images to construct a style map. The map is then used to modulate the target pose's feature map for target try-on image generation. With the parallel flow estimation design, our model can be trained end-to-end in a single stage and is more computationally efficient, resulting in new SOTA performance on existing MPVTON benchmarks. We further introduce multi-task training and demonstrate that our model can also be applied for traditional VTON and pose transfer tasks and achieve comparable performance to SOTA specialized models on both tasks

    Virtual Try-On With Generative Adversarial Networks: A Taxonomical Survey

    Get PDF
    This chapter elaborates on using generative adversarial networks (GAN) for virtual try-on applications. It presents the first comprehensive survey on this topic. Virtual try-on represents a practical application of GANs and pixel translation, which improves on the techniques of virtual try-on prior to these new discoveries. This survey details the importance of virtual try-on systems and the history of virtual try-on; shows how GANs, pixel translation, and perceptual losses have influenced the field; and summarizes the latest research in creating virtual try-on systems. Additionally, the authors present the future directions of research to improve virtual try-on systems by making them usable, faster, more effective. By walking through the steps of virtual try-on from start to finish, the chapter aims to expose readers to key concepts shared by many GAN applications and to give readers a solid foundation to pursue further topics in GANs

    WORK TOGETHER… WHEN APART CHALLENGES AND WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAMS

    Get PDF
    Increasingly competitive global markets and accelerating technological changes have increased the need for people to contact via electronic medium to have daily updates, the people those who could not able to meet face to face every day. Those who contact via electronic medium i.e. Virtual Team, are having number of benefit but to achieve these potential benefits, however, leaders need to overcome liabilities inherent in the lack of direct contact among team members and managers. Team members may not naturally know how to interact effectively across space and time. By this paper author try to throw some lights on the challenges that virtual team faces and try to elaborate what is needed for Virtual Team

    Dual-Branch Collaborative Transformer for Virtual Try-On

    Get PDF
    Image-based virtual try-on has recently gained a lot of attention in both the scientific and fashion industry communities due to its challenging setting and practical real-world applications. While pure convolutional approaches have been explored to solve the task, Transformer-based architectures have not received significant attention yet. Following the intuition that self- and cross-attention operators can deal with long-range dependencies and hence improve the generation, in this paper we extend a Transformer-based virtual try-on model by adding a dual-branch collaborative module that can exploit cross-modal information at generation time. We perform experiments on the VITON dataset, which is the standard benchmark for the task, and on a recently collected virtual try-on dataset with multi-category clothing, Dress Code. Experimental results demonstrate the effectiveness of our solution over previous methods and show that Transformer-based architectures can be a viable alternative for virtual try-on
    • …
    corecore