611 research outputs found

    A differential-based parallel force/velocity actuation concept : theory and experiments

    Get PDF
    textRobots are now moving from their conventional confined habitats such as factory floors to human environments where they assist and physically interact with people. The requirement for inherent mechanical safety is overarching in such human-robot interaction systems. We propose a dual actuator called Parallel Force/Velocity Actuator (PFVA) that combines a Force Actuator (FA) (low velocity input) and a Velocity Actuator (VA) (high velocity input) using a differential gear train. In this arrangement mechanical safety can be achieved by limiting the torque on the FA and thus making it a backdriveable input. In addition, the kinematic redundancy in the drive can be used to control output velocity while satisfying secondary operational objectives. Our research focus was on three areas: (i) scalable parametric design of the PFVA, (ii) analytical modeling of the PFVA and experimental testing on a single-joint prototype, and (iii) generalized model formulation for PFVA-driven serial robot manipulators. In our analysis, the ratio of velocity ratios between the FA and the VA, called the relative scale factor, emerged as a purely geometric and dominant design parameter. Based on a dimensionless parametric design of PFVAs using power-flow and load distributions between the inputs, a prototype was designed and built using commercial-off-the-shelf components. Using controlled experiments, two performance-limiting phenomena in our prototype, friction and dynamic coupling between the two inputs, were identified. Two other experiments were conducted to characterize the operational performance of the actuator in velocity-mode and in what we call ‘torque-limited’ mode (i.e. when the FA input can be backdriven). Our theoretical and experimental results showed that the PFVA can be mechanical safe to both slow collisions and impacts due to the backdriveability of the FA. Also, we show that its kinematic redundancy can be effectively utilized to mitigate low-velocity friction and backlash in geared mechanisms. The implication at the system level of our actuator level analytical and experimental work was studied using a generalized dynamic modeling framework based on kinematic influence coefficients. Based on this dynamic model, three design case studies for a PFVA-driven serial planar 3R manipulator were presented. The major contributions of this research include (i) mathematical models and physical understanding for over six fundamental design and operational parameters of the PFVA, based on which approximately ten design and five operational guidelines were laid out, (ii) analytical and experimental proof-of-concept for the mechanical safety feature of the PFVA and the effective utilization of its kinematic redundancy, (iii) an experimental methodology to characterize the dynamic coupling between the inputs in a differential-summing mechanism, and (iv) a generalized dynamic model formulation for PFVA-driven serial robot manipulators with emphasis on distribution of output loads between the FA and VA input-sets.Mechanical Engineerin

    Developing tools and methods for object-oriented mechatronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. [161]-166).The digital revolution has fundamentally changed our lives by giving us new ways to express ourselves through digital media. For example, accessible multimedia content creation tools allow people to instantiate their ideas and share them easily. However, most of these outcomes only exist on-screen and online. Despite the growing accessibility of digital design and fabrication tools the physical world and everyday objects surrounding us have been largely excluded from a parallel explosion of possibilities to express ourselves. Increasingly, webbased services allow professional and non-professional audiences to access computer-aided manufacturing (CAM) tools like 3D-printing and laser-cutting. Nonetheless, there are few (if any) design tools and methods for creating complex mechanical assemblies that take full advantage of CAM systems. Creating unique mechatronic artifacts or "originalMachines" requires more specific and sophisticated design tools than exist today. "Object-Oriented Mechatronics" is a parametric design approach that connects knowledge about mechanical assemblies and electronics with the requirements of digital manufacturing processes. Parametric instances like gears, bearing and servos are made available as objects within a CAD environment which can then be implemented into specific projects. The approach addresses the missing link between accessible rapid-manufacturing services and currently available design tools thereby creating new opportunities for self-expression through mechatronic objects and machines. The dissertation matches mechanical components and assemblies with rapid manufacturing methods by exploring transferability of conventional manufacturing techniques to appropriate rapid manufacturing tools. I rebuild various gearing and bearing principles like four-contact point bearings, cross roller bearings, spur and helical gears, planetary gears, cycloidal and harmonic gear reducers using the laser cutter, the CNC-mill and the 3D-printer. These explorations lead to more complex assemblies such as the PlywoodServo, 3DprintedClock and 3-DoF (Degree of Freedom) Head. The lessons from these explorations are summarized in a detailed "cook book" of novel mechatronic assemblies enabled by new fabrication tools. Furthermore, I use the results to develop a CAD tool that brings together several existing software packages and plug-ins including Rhino, Grasshopper and the Firefly experiments for Arduino, which will allow animation, fabrication and control of original machines. The tool is an example of an object-oriented design approach to mechatronic assemblies. A user calls a DoF (Degree of Freedom) object (parametric servo) with specific parameters like gearing and bearing types, motor options and control and communication capabilities. The DoF object then creates the corresponding geometry which can be connected and integrated with other actuators and forms. A group of roboticists and designers participated in a workshop to test the tool and make proposals for original machines using the tool. The dissertation has contributions on multiple levels. First, the actuator assembly examples and parametric design tool present a body of novel work that illustrates the benefits of going beyond off-the-shelf actuator assemblies and kit-of-parts for robotic objects. Second, this tool and the accompanying examples enable the design of more original machines with custom actuator assemblies using the latest digital fabrication tools. Finally, these explorations illustrate how new CAD/ CAM tools can facilitate an exchange between more design-oriented users and more engineering-oriented users.by Peter Schmitt.Ph.D

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Indoor navigation systems for unmanned aerial vehicles

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Energy-oriented Modeling And Control of Robotic Systems

    Get PDF
    This research focuses on the energy-oriented control of robotic systems using an ultracapacitor as the energy source. The primary objective is to simultaneously achieve the motion task objective and to increase energy efficiency through energy regeneration. To achieve this objective, three aims have been introduced and studied: brushless DC motors (BLDC) control by achieving optimum current in the motor, such that the motion task is achieved, and the energy consumption is minimized. A proof-ofconcept study to design a BLDC motor driver which has superiority compare to an off-the-shelf driver in terms of energy regeneration, and finally, the third aim is to develop a framework to study energy-oriented control in cooperative robots. The first aim is achieved by introducing an analytical solution which finds the optimal currents based on the desired torque generated by a virtual. Furthermore, it is shown that the well-known choice of a zero direct current component in the direct-quadrature frame is sub-optimal relative to our energy optimization objective. The second aim is achieved by introducing a novel BLDC motor driver, composed of three independent regenerative drives. To run the motor, the control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance, and a reduction of 15% energy consumption is achieved. v For the third aim, an impedance-based control scheme is introduced for cooperative manipulators grasping a rigid object. The position and orientation of the payload are to be maintained close to a desired trajectory, trading off tracking accuracy by low energy consumption and maintaining stability. To this end, an optimization problem is formulated using energy balance equations. The optimization finds the damping and stiffness gains of the impedance relation such that the energy consumption is minimized. Furthermore, L2 stability techniques are used to allow for time-varying damping and stiffness in the desired impedance. A numerical example is provided to demonstrate the results

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Design, construction and flight control of a quad tilt-wing unmanned aerial vehicle

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are flying robots that are employed both in civilian and military applications with a steeply increasing trend. They are already used extensively in civilian applications such as law enforcement, earth surface mapping and surveillance in disasters, and in military missions such as surveillance, reconnaissance and target acquisition. As the demand on their utilization increases, novel designs with far more advances in autonomy, flight capabilities and payloads for carrying more complex and intelligent sensors are emerging. With these technological advances, people will find even newer operational fields for UAVs. This thesis work focuses on the design, construction and flight control of a novel UAV (SUAVI: Sabanci University Unmanned Aerial VehIcle). SUAVI is an electric powered compact size quad tilt-wing UAV, which is capable of vertical takeoff and landing (VTOL) like a helicopter, and flying horizontally like an airplane by tilting its wings. It carries onboard cameras for capturing images and broadcasting them via RF communication with the ground station. In the aerodynamic and mechanical design of SUAVI, flight duration, flight speed, size, power source and missions to be carried out are taken into account. The aerodynamic design is carried out by considering the maximization of the aerodynamic efficiency and the safe fiight characteristics. The components in the propulsion system are selected to optimize propulsion efficiency and fulfill the requirements of the control for a stable flight in the entire speed range. Simulation results obtained by ANSYS and NASA FoilSimII are evaluated and motor thrust tests are conducted during this optimization process. The power source is determined by taking the weight and flight duration into account. The wings and the fuselage are shaped iteratively in fluid flow simulations. Additionally, the verification of aerodynamic design and maneuverability are assessed in the wind tunnel tests on the half-body prototype. The mechanical structure is designed to be lightweight, strong and protective, and to allow easy assembly and disassembly of SUAVI for practical use. The safety factors in the mechanical system are determined using FEM analysis in ANSYS environment. Specimens of candidate composite skin materials are prepared and tested for lightness, strength and integrity in mechanical tests. The ready for flight prototype SUAVI is produced from the selected composite material. Dynamical model of SUAVI is obtained using Newton-Euler formulation. Aerodynamic disturbances such as wind gusts are modeled using the wellknown Dryden wind turbulence model. As the flight control system, a supervisory control architecture is implemented where a Gumstix microcomputer and several Atmega16 microcontrollers are used as the high-level and low- level controllers, respectively. Gumstix computer acts as a supervisor which orchestrates switching of low-level controllers into the system and is responsible for decision making, monitoring states of the vehicle and safety checks during the entire flight. It also generates attitude references for the low-level controllers using data from GPS or camera. Various analog and digital filters are implemented to smooth out noisy sensor measurements. Extended Kalman filter is utilized to obtain reliable orientation information by fusing data from low-cost MEMS inertial sensors such as gyros, accelerometers and the compass. PID controllers are implemented for both the high-level GPS based acceleration controller and the low-level altitude and attitude controllers. External disturbances are estimated and compensated by a disturbance observer. Real-time control software is developed for the whole fiight control system. SUAVI can operate in semi-autonomous mode by communicating with the ground station. A quadrotor test platform (SUQUAD: Sabanci University QUADrotor) is also produced and used for the initial performance tests of the fiight control system. After successful fiight tests on this platform, the control system is transferred to SUAVI. Performance of the flight control system is verified by numerous simulations and real flight experiments. VTOL and horizontal flights are successfully realized

    Architectural study of the design and operation of advanced force feedback manual controllers

    Get PDF
    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof concepts is presented as a feasible test-bed for enhanced performance in a 9-dof system

    Advances in Spacecraft Systems and Orbit Determination

    Get PDF
    "Advances in Spacecraft Systems and Orbit Determinations", discusses the development of new technologies and the limitations of the present technology, used for interplanetary missions. Various experts have contributed to develop the bridge between present limitations and technology growth to overcome the limitations. Key features of this book inform us about the orbit determination techniques based on a smooth research based on astrophysics. The book also provides a detailed overview on Spacecraft Systems including reliability of low-cost AOCS, sliding mode controlling and a new view on attitude controller design based on sliding mode, with thrusters. It also provides a technological roadmap for HVAC optimization. The book also gives an excellent overview of resolving the difficulties for interplanetary missions with the comparison of present technologies and new advancements. Overall, this will be very much interesting book to explore the roadmap of technological growth in spacecraft systems
    corecore