49,023 research outputs found

    Virtual Testing for Smart Buildings

    Get PDF
    International audienceSmart buildings promise to revolutionize the way we live. Applications ranging from climate control to fire management can have significant impact on the quality and cost of these services. However, smart buildings and any technology with direct effect on human safety and life must undergo extensive testing. Virtual testing by means of computer simulation can significantly reduce the cost of testing and, as a result, accelerate the development of novel applications. Unfortunately, building physically-accurate simulation codes can be labor intensive. To address this problem, we propose a framework for rapid, physically-accurate virtual testing. The proposed framework supports analytical modeling of both a discrete distributed system as well as the physical environment that hosts it. The discrete models supported are accurate enough to allow the automatic generation of a dedicated programming framework that will help the developer in the implementation of these systems. The physical environment models supported are equational specifications that are accurate enough to produce running simulation codes. Combined, these two frameworks enable simulating both active systems and physical environments. These simulations can be used to monitor the behavior and gather statistics about the performance of an application in the context of precise virtual experiments. To illustrate the approach, we present models of Heating, Ventilating and Air-Conditioning (HVAC) systems. Using these models, we construct virtual experiments that illustrate how the approach can be used to optimize energy and cost of climate control for a building

    Preliminary Results in Virtual Testing for Smart Buildings (Poster)

    Get PDF
    International audienceSmart buildings promise to revolutionize the way we live. Applications ranging from climate control to fire management can have significant impact on the quality and cost of these services. However, a smart building and any technology with direct effect on the safety of its occupants must undergo extensive testing. Virtual testing by means of computer simulation can significantly reduce the cost of testing and, as a result, accelerate the development of novel applications. Unfortunately, building physically-accurate simulation codes can be labor intensive. To address this problem, we propose a framework for rapid, physically-accurate virtual testing of smart building systems. The proposed framework supports analytical modeling and simulation of both a discrete distributed system as well as the physical environment that hosts it

    Development of a hardware-In-the-Loop (HIL) testbed for cyber-physical security in smart buildings

    Full text link
    As smart buildings move towards open communication technologies, providing access to the Building Automation System (BAS) through the intranet, or even remotely through the Internet, has become a common practice. However, BAS was historically developed as a closed environment and designed with limited cyber-security considerations. Thus, smart buildings are vulnerable to cyber-attacks with the increased accessibility. This study introduces the development and capability of a Hardware-in-the-Loop (HIL) testbed for testing and evaluating the cyber-physical security of typical BASs in smart buildings. The testbed consists of three subsystems: (1) a real-time HIL emulator simulating the behavior of a virtual building as well as the Heating, Ventilation, and Air Conditioning (HVAC) equipment via a dynamic simulation in Modelica; (2) a set of real HVAC controllers monitoring the virtual building operation and providing local control signals to control HVAC equipment in the HIL emulator; and (3) a BAS server along with a web-based service for users to fully access the schedule, setpoints, trends, alarms, and other control functions of the HVAC controllers remotely through the BACnet network. The server generates rule-based setpoints to local HVAC controllers. Based on these three subsystems, the HIL testbed supports attack/fault-free and attack/fault-injection experiments at various levels of the building system. The resulting test data can be used to inform the building community and support the cyber-physical security technology transfer to the building industry.Comment: Presented at the 2023 ASHRAE Winter Conferenc

    Policy Design for Controlling Set-Point Temperature of ACs in Shared Spaces of Buildings

    Full text link
    Air conditioning systems are responsible for the major percentage of energy consumption in buildings. Shared spaces constitute considerable office space area, in which most office employees perform their meetings and daily tasks, and therefore the ACs in these areas have significant impact on the energy usage of the entire office building. The cost of this energy consumption, however, is not paid by the shared space users, and the AC's temperature set-point is not determined based on the users' preferences. This latter factor is compounded by the fact that different people may have different choices of temperature set-points and sensitivities to change of temperature. Therefore, it is a challenging task to design an office policy to decide on a particular set-point based on such a diverse preference set. As a result, users are not aware of the energy consumption in shared spaces, which may potentially increase the energy wastage and related cost of office buildings. In this context, this paper proposes an energy policy for an office shared space by exploiting an established temperature control mechanism. In particular, we choose meeting rooms in an office building as the test case and design a policy according to which each user of the room can give a preference on the temperature set-point and is paid for felt discomfort if the set-point is not fixed according to the given preference. On the other hand, users who enjoy the thermal comfort compensate the other users of the room. Thus, the policy enables the users to be cognizant and responsible for the payment on the energy consumption of the office space they are sharing, and at the same time ensures that the users are satisfied either via thermal comfort or through incentives. The policy is also shown to be beneficial for building management. Through experiment based case studies, we show the effectiveness of the proposed policy.Comment: Journal paper accepted in Energy & Buildings (Elsevier

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Meeting the challenge of zero carbon homes : a multi-disciplinary review of the literature and assessment of key barriers and enablers

    Get PDF
    Within the built environment sector, there is an increasing pressure on professionals to consider the impact of development upon the environment. These pressures are rooted in sustainability, and particularly climate change. But what is meant by sustainability? It is a term whose meaning is often discussed, the most common definition taken from the Bruntland report as “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (World Commission on Environment and Development, 1987). In the built environment, the sustainability issues within the environment, social and economic spheres are often expressed through design considerations of energy, water and waste. Given the Stern Report’s economic and political case for action with respect to climate change (Stern, 2006) and the IPCC’s Fourth Assessment Report’s confirmation of the urgency of the climate change issue and it’s root causes (IPCC, 2007), the need for action to mitigate the effects of climate change is currently high on the political agenda. Excess in carbon dioxide concentrations over the natural level have been attributed to anthropogenic sources, most particularly the burning of carbon-based fossil fuels. Over 40% of Europe’s energy and 40% of Europe’s carbon dioxide emissions arise from use of energy in buildings. Energy use in buildings is primarily for space heating, water heating, lighting and appliance use. Professionals in the built environment can therefore play a significant role in meeting targets for mitigating the effects of climate change. The UK Government recently published the Code for Sustainable Homes (DCLG, 2006). Within this is the objective of development of zero carbon domestic new build dwellings by 2016. It is the domestic zero carbon homes agenda which is the focus of this report. The report is the culmination of a research project, funded by Northumbria University, and conducted from February 2008 to July 2008, involving researchers from the Sustainable Cities Research Institute (within the School of the Built Environment) and academics, also from within the School. The aim of the project was to examine, in a systematic and holistic way, the critical issues, drivers and barriers to building and adapting houses to meet zero carbon targets. The project involved a wide range of subject specialisms within the built environment and took a multi-disciplinary approach. Practitioner contribution was enabled through a workshop. The focus of this work was to review the academic literature on the built environment sector and its capabilities to meet zero carbon housing targets. It was not possible to undertake a detailed review of energy efficiency or micro-generation technologies, the focus of the research was instead in four focussed areas: policy, behaviour, supply chain and technology.What follows is the key findings of the review work undertaken. Chapter One presents the findings of the policy and regulation review. In Chapter Two the review of behavioural aspects of energy use in buildings is presented. Chapter Three presents the findings of the review of supply chain issues. Chapter Four presents the findings of the technology review, which focuses on phase change materials. A summary of the key barriers and enablers, and areas for future research work, concludes this report in Chapter Five. Research is always a work in progress, and therefore comments on this document are most welcome, as are offers of collaboration towards solutions. The School of the Built Environment at Northumbria University strives to embed its research in practical applications and solutions to the need for a low carbon economy

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Load Balancing with Energy Storage Systems Based on Co-Simulation of Multiple Smart Buildings and Distribution Networks

    Get PDF
    In this paper, we present a co-simulation framework that combines two main simulation tools, one that provides detailed multiple building energy simulation ability with Energy-Plus being the core engine, and the other one that is a distribution level simulator, Matpower. Such a framework can be used to develop and study district level optimization techniques that exploit the interaction between a smart electric grid and buildings as well as the interaction between buildings themselves to achieve energy and cost savings and better energy management beyond what one can achieve through techniques applied at the building level only. We propose a heuristic algorithm to do load balancing in distribution networks affected by service restoration activities. Balancing is achieved through the use of utility directed usage of battery energy storage systems (BESS). This is achieved through demand response (DR) type signals that the utility communicates to individual buildings. We report simulation results on two test cases constructed with a 9-bus distribution network and a 57-bus distribution network, respectively. We apply the proposed balancing heuristic and show how energy storage systems can be used for temporary relief of impacted networks
    corecore