142 research outputs found

    Virtual Signal Injection-Based Direct Flux Vector Control of IPMSM Drives

    Get PDF
    This paper describes a novel virtual signal injection-based direct flux vector control for the maximum torque per ampere (MTPA) operation of the interior permanent magnet synchronous motor (IPMSM) in the constant torque region. The proposed method virtually injects a small high-frequency current angle signal for tracking the optimal flux amplitude of the MTPA operation. This control scheme is not affected by the accuracy of the flux observer and is independent of machine parameters in tracking the MTPA points and will not cause additional iron loss, copper loss, and torque ripple as a result of real signal injection. Moreover, by employing a bandpass filter with a narrow frequency range the proposed control scheme is also robust to current and voltage harmonics, and load torque disturbances. The proposed method is verified by simulations and experiments under various operating conditions on a prototype IPMSM drive system

    Self-learning Direct Flux Vector Control of Interior Permanent Magnet Machine Drives

    Get PDF
    This paper proposes a novel self-learning control scheme for interior permanent magnet synchronous machine (IPMSM) drives to achieve maximum torque per ampere (MTPA) operation in constant torque region and voltage constraint maximum torque per ampere (VCMTPA) operation in field weakening region. The proposed self-learning control scheme (SLC) is based on the newly reported virtual signal injection aided direct flux vector control. However, other searching based optimal control schemes in the flux-torque (f-t) reference frame are also possible. Initially the reference flux amplitudes for MTPA operations are tracked by virtual signal injection and the data are used by the proposed self-learning control scheme to train the reference flux map online. After training, the proposed control scheme generates the optimal reference flux amplitude with fast dynamic response. The proposed control scheme can achieve MTPA or VCMTPA control fast and accurately without accurate prior knowledge of machine parameters and can adapt to machine parameter changes during operation. The proposed control scheme is verified by experiments under various operation conditions on a prototype 10 kW IPMSM drive

    MTPA control of IPMSM drives based on virtual signal injection considering machine parameter variations

    Get PDF
    Due to parameter variations with stator currents, the derivatives of machine parameters with respect to current angle or d-axis current are not zero. However, these derivative terms are ignored by most of mathematical model based efficiency optimized control schemes. Therefore, even though the accurate machine parameters are known, these control schemes cannot calculate the accurate efficiency optimized operation points. In this paper, the influence of these derivative terms on maximum torque per ampere (MTPA) control is analyzed and a method to take into account these derivative terms for MTPA operation is proposed based on the recently reported virtual signal injection control (VSIC) method for interior permanent magnet synchronous machine (IPMSM) drives. The proposed control method is demonstrated by both simulations and experiments under various operating conditions on prototype IPMSM drive systems

    Direct Torque Control for Silicon Carbide Motor Drives

    Get PDF
    Direct torque control (DTC) is an extensively used control method for motor drives due to its unique advantages, e.g., the fast dynamic response and the robustness against motor parameters variations, uncertainties, and external disturbances. Using higher switching frequency is generally required by DTC to reduce the torque ripples and decrease stator current total harmonic distortion (THD), which however can lower the drive efficiency. Through the use of the emerging silicon carbide (SiC) devices, which have lower switching losses compared to their silicon counterparts, it is feasible to achieve high efficiency and low torque ripple simultaneously for DTC drives. To overcome the above challenges, a SiC T-type neutral point clamped (NPC) inverter is studied in this work to significantly reduce the torque and flux ripples which also effectively reduce the stator current ripples, while retaining the fast-dynamic response as the conventional DTC. The unbalanced DC-link is an intrinsic issue of the T-type inverter, which may also lead to higher torque ripple. To address this issue, a novel DTC algorithm, which only utilizes the real voltage space vectors and the virtual space vectors (VSVs) that do not contribute to the neutral point current, is proposed to achieve inherent dc-link capacitor voltage balancing without using any DC-link voltage controls or additional DC-link capacitor voltages and/or neutral point current sensors. Both dynamic performance and efficiency are critical for the interior permanent-magnet (IPM) motor drives for transportation applications. It is critical to determine the optimal reference stator flux linkage to improve the efficiency further of DTC drives and maintain the stability of the drive system, which usually obtained by tuning offline and storing in a look-up table or calculated online using machine models and parameters. In this work, the relationship between the stator flux linkage and the magnitude of stator current is analyzed mathematically. Then, based on this relationship, a perturb and observe (P&O) method is proposed to determine the optimal flux for the motor which does not need any prior knowledge of the machine parameters and offline tuning. However, due to the fixed amplitude of the injected signal the P&O algorithm suffers from large oscillations at the steady state conditions. To mitigate the drawback of the P&O method, an adaptive high frequency signal injection based extremum seeking control (ESC) algorithm is proposed to determine the optimal reference flux in real-time, leading to a maximum torque per ampere (MTPA) like approach for DTC drives. The stability analysis and key parameters selection for the proposed ESC algorithm are studied. The proposed method can effectively reduce the motor copper loss and at the same time eliminate the time consuming offline tuning effort. Furthermore, since the ESC is a model-free approach, it is robust against motor parameters variations, which is desirable for IPM motors

    On Accuracy of Virtual Signal Injection based MTPA Operation of Interior Permanent Magnet Synchronous Machine Drives

    Get PDF
    This correspondence analyzes the accuracy of maximum torque per ampere (MTPA) operations of interior permanent magnet machines based on the technique described in [T. Sun, J. Wang, and X. Chen, “Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection,’’ IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sep. 2015] in responses to a few inquiries made by the readers. It is shown that due to parameter variations with stator currents, any technique for MTPA tracking based on piecewise constant parameter assumption, i.e., the machine parameters are assumed as constants during the calculation of ∂Te/∂β, would result in tracking error even though the machine parameters are obtained from lookup table or online machine parameter estimations. The error is dependent on machine nonlinear characteristics and operating conditions. It is also shown that for the prototype interior permanent magnet synchronous machine the virtual signal injection control technique described in the paper mentioned above yields a better tracking accuracy

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Integration of FOC with DFVC for interior permanent magnet synchronous machine drives

    Get PDF
    In this paper, the drawbacks of the conventional f-t frame based maximum torque per ampere (MTPA) control schemes are analyzed and mathematically proved. In order to inherit the merits of both the direct flux vector control (DFVC) in field weakening region and field orientated control (FOC) in constant torque region while avoiding their disadvantages, an integrated control scheme is proposed. The proposed control scheme integrates the FOC into f-t reference frame at low speeds to achieve a relatively accurate and robust MTPA control, while at high speeds, the DFVC is adopted to utilize the advantages of f-t frame based control scheme in field weakening region. A shape function is utilized by the proposed control scheme to achieve a smooth transition between the two control schemes. The proposed control scheme is verified by experiments under various operation conditions on a prototype IPMSM drive. The simulation and experimental results illustrate that the proposed control scheme could achieve a better MTPA control accuracy in constant torque region and a better field weakening performance in the constant power region. Meanwhile the complex look-up tables for FOC in field weakening region and the difficulties in observing flux vector at low speed are avoided

    Efficiency Optimised Control of Interior Permanent Magnet Synchronous Machine (IPMSM) Drives for Electric Vehicle Tractions

    Get PDF

    Control solutions for multiphase permanent magnet synchronous machine drives applied to electric vehicles

    Get PDF
    207 p.En esta tesis se estudia la utilización de un accionamiento eléctrico basado en una máquina simétrica dual trifásica aplicada al sistema de propulsión de un vehículo eléctrico. Dicho accionamiento está basado en una máquina síncrona de imanes permanentes interiores. Además, dispone de un bus CC con una configuración en cascada. Por otra parte, se incorpora un convertidor CC/CC entre el módulo de baterías y el inversor de seis fases para proveer el vehículo con capacidades de carga rápida, y evitando al mismo tiempo la utilización de semiconductores de potencia con altas tensiones nominales. En este escenario, el algoritmo de control debe hacer frente a las no linealidades de la máquina, proporcionando un comando de consigna preciso para todo el rango de par y velocidad del convertidor. Por lo tanto, deben tenerse en cuenta los efectos de acoplamiento cruzado entre los devanados, y la tensión de los condensadores de enlace en cascada debe controlarse y equilibrarse activamente. En vista de ello, los autores proponen un novedoso enfoque de control que proporciona todas estas funcionalidades. La propuesta se ha validado experimentalmente en un prototipo a escala real de accionamiento eléctrico de 70 kW, probado en un laboratorio y en un vehículo eléctrico en condiciones reales de conducción.Tecnali
    • …
    corecore