5,303 research outputs found

    INTERFACE DESIGN FOR A VIRTUAL REALITY-ENHANCED IMAGE-GUIDED SURGERY PLATFORM USING SURGEON-CONTROLLED VIEWING TECHNIQUES

    Get PDF
    Initiative has been taken to develop a VR-guided cardiac interface that will display and deliver information without affecting the surgeons’ natural workflow while yielding better accuracy and task completion time than the existing setup. This paper discusses the design process, the development of comparable user interface prototypes as well as an evaluation methodology that can measure user performance and workload for each of the suggested display concepts. User-based studies and expert recommendations are used in conjunction to es­ tablish design guidelines for our VR-guided surgical platform. As a result, a better understanding of autonomous view control, depth display, and use of virtual context, is attained. In addition, three proposed interfaces have been developed to allow a surgeon to control the view of the virtual environment intra-operatively. Comparative evaluation of the three implemented interface prototypes in a simulated surgical task scenario, revealed performance advantages for stereoscopic and monoscopic biplanar display conditions, as well as the differences between three types of control modalities. One particular interface prototype demonstrated significant improvement in task performance. Design recommendations are made for this interface as well as the others as we prepare for prospective development iterations

    Interactive Experience Design: Integrated and Tangible Storytelling with Maritime Museum Artefacts

    Get PDF
    Museums play the role of intermediary between cultural heritage and visitors, and are often described as places and environments for education and enjoyment. The European Union also encourages innovative uses of museums to support education through the cultural heritage resources. However, the importance of visitors’ active role in museums as places for education and entertainment, on the one hand, and the growing and indispensable presence of technology in the cultural heritage domain, on the other hand, provided the initial ideas to develop the research. This thesis, presents the study and design for an interactive storytelling installation for a maritime museum. The installation is designed to integrate different museum artefacts into the storytelling system to enrich the visitors experience through tangible storytelling. The project was conducted in collaboration with another PhD student, Luca Ciotoli. His contribution was mainly focused on the narrative and storytelling features of the research, while my contribution was focused on the interaction- and technology-related features, including the design and implementation of the prototype. The research is deployed using a four-phase iterative approach. The first phase of the research, Study, deals with literature review and different studies to identify the requirements. The second phase, Design, determines the broad outlines of the project i.e., an interactive storytelling installation. The design phase includes interaction and museum experience design. We investigated different design approaches, e.g., interaction and museum experience design, to develop a conceptual design. The third phase, prototype, allows us to determine how to fulfill the tasks and meet the requirements that are established for the research. Prototyping involves content creation, storyboarding, integrating augmented artefacts into the storytelling system. Th final phase, test, refers to the evaluations that are conducted during the aforementioned phases e.g., formative and the final usability testing with users. The outcome of the research confirms previous results in the literature about how digital narratives can be enriched with the tangible dimension, moreover it shows how this dimension can enable to communicate stories and knowledge of the past that are complex, such as the art of navigating in the past, by integrating tangible objects that play different roles in the storytelling process

    XR, music and neurodiversity: design and application of new mixed reality technologies that facilitate musical intervention for children with autism spectrum conditions

    Get PDF
    This thesis, accompanied by the practice outputs,investigates sensory integration, social interaction and creativity through a newly developed VR-musical interface designed exclusively for children with a high-functioning autism spectrum condition (ASC).The results aim to contribute to the limited expanse of literature and research surrounding Virtual Reality (VR) musical interventions and Immersive Virtual Environments (IVEs) designed to support individuals with neurodevelopmental conditions. The author has developed bespoke hardware, software and a new methodology to conduct field investigations. These outputs include a Virtual Immersive Musical Reality Intervention (ViMRI) protocol, a Supplemental Personalised, immersive Musical Experience(SPiME) programme, the Assisted Real-time Three-dimensional Immersive Musical Intervention System’ (ARTIMIS) and a bespoke (and fully configurable) ‘Creative immersive interactive Musical Software’ application (CiiMS). The outputs are each implemented within a series of institutional investigations of 18 autistic child participants. Four groups are evaluated using newly developed virtual assessment and scoring mechanisms devised exclusively from long-established rating scales. Key quantitative indicators from the datasets demonstrate consistent findings and significant improvements for individual preferences (likes), fear reduction efficacy, and social interaction. Six individual case studies present positive qualitative results demonstrating improved decision-making and sensorimotor processing. The preliminary research trials further indicate that using this virtual-reality music technology system and newly developed protocols produces notable improvements for participants with an ASC. More significantly, there is evidence that the supplemental technology facilitates a reduction in psychological anxiety and improvements in dexterity. The virtual music composition and improvisation system presented here require further extensive testing in different spheres for proof of concept

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    Haptic Media Scenes

    Get PDF
    The aim of this thesis is to apply new media phenomenological and enactive embodied cognition approaches to explain the role of haptic sensitivity and communication in personal computer environments for productivity. Prior theory has given little attention to the role of haptic senses in influencing cognitive processes, and do not frame the richness of haptic communication in interaction design—as haptic interactivity in HCI has historically tended to be designed and analyzed from a perspective on communication as transmissions, sending and receiving haptic signals. The haptic sense may not only mediate contact confirmation and affirmation, but also rich semiotic and affective messages—yet this is a strong contrast between this inherent ability of haptic perception, and current day support for such haptic communication interfaces. I therefore ask: How do the haptic senses (touch and proprioception) impact our cognitive faculty when mediated through digital and sensor technologies? How may these insights be employed in interface design to facilitate rich haptic communication? To answer these questions, I use theoretical close readings that embrace two research fields, new media phenomenology and enactive embodied cognition. The theoretical discussion is supported by neuroscientific evidence, and tested empirically through case studies centered on digital art. I use these insights to develop the concept of the haptic figura, an analytical tool to frame the communicative qualities of haptic media. The concept gauges rich machine- mediated haptic interactivity and communication in systems with a material solution supporting active haptic perception, and the mediation of semiotic and affective messages that are understood and felt. As such the concept may function as a design tool for developers, but also for media critics evaluating haptic media. The tool is used to frame a discussion on opportunities and shortcomings of haptic interfaces for productivity, differentiating between media systems for the hand and the full body. The significance of this investigation is demonstrating that haptic communication is an underutilized element in personal computer environments for productivity and providing an analytical framework for a more nuanced understanding of haptic communication as enabling the mediation of a range of semiotic and affective messages, beyond notification and confirmation interactivity

    Alternative realities : from augmented reality to mobile mixed reality

    Get PDF
    This thesis provides an overview of (mobile) augmented and mixed reality by clarifying the different concepts of reality, briefly covering the technology behind mobile augmented and mixed reality systems, conducting a concise survey of existing and emerging mobile augmented and mixed reality applications and devices. Based on the previous analysis and the survey, this work will next attempt to assess what mobile augmented and mixed reality could make possible, and what related applications and environments could offer to users, if tapped into their full potential. Additionally, this work briefly discusses what might be the cause for mobile augmented reality not yet being widely adopted to everyday use, even though many such applications already exist for the smartphone platform, and smartglass systems slowly becoming increasingly common. Other related topics and issues that are briefly covered include information security and privacy issues related to mobile augmented and mixed reality systems, the link between mobile mixed reality and ubiquitous computing, previously conducted user studies, as well as user needs and user experience issues. The overall purpose of this thesis is to demonstrate what is already possible to implement on the mobile platform (including both hand-held devices and head-mounted configurations) by using augmented and mixed reality interfaces, and to consider how mobile mixed reality systems could be improved, based on existing products, studies and lessons learned from the survey conducted in this thesis

    Multimodal interaction: developing an interaction concept for a touchscreen incorporating tactile feedback

    Get PDF
    The touchscreen, as an alternative user interface for applications that normally require mice and keyboards, has become more and more commonplace, showing up on mobile devices, on vending machines, on ATMs and in the control panels of machines in industry, where conventional input devices cannot provide intuitive, rapid and accurate user interaction with the content of the display. The exponential growth in processing power on the PC, together with advances in understanding human communication channels, has had a significant effect on the design of usable, human-factored interfaces on touchscreens, and on the number and complexity of applications available on touchscreens. Although computer-driven touchscreen interfaces provide programmable and dynamic displays, the absence of the expected tactile cues on the hard and static surfaces of conventional touchscreens is challenging interface design and touchscreen usability, in particular for distracting, low-visibility environments. Current technology allows the human tactile modality to be used in touchscreens. While the visual channel converts graphics and text unidirectionally from the computer to the end user, tactile communication features a bidirectional information flow to and from the user as the user perceives and acts on the environment and the system responds to changing contextual information. Tactile sensations such as detents and pulses provide users with cues that make selecting and controlling a more intuitive process. Tactile features can compensate for deficiencies in some of the human senses, especially in tasks which carry a heavy visual or auditory burden. In this study, an interaction concept for tactile touchscreens is developed with a view to employing the key characteristics of the human sense of touch effectively and efficiently, especially in distracting environments where vision is impaired and hearing is overloaded. As a first step toward improving the usability of touchscreens through the integration of tactile effects, different mechanical solutions for producing motion in tactile touchscreens are investigated, to provide a basis for selecting suitable vibration directions when designing tactile displays. Building on these results, design know-how regarding tactile feedback patterns is further developed to enable dynamic simulation of UI controls, in order to give users a sense of perceiving real controls on a highly natural touch interface. To study the value of adding tactile properties to touchscreens, haptically enhanced UI controls are then further investigated with the aim of mapping haptic signals to different usage scenarios to perform primary and secondary tasks with touchscreens. The findings of the study are intended for consideration and discussion as a guide to further development of tactile stimuli, haptically enhanced user interfaces and touchscreen applications
    • …
    corecore