295 research outputs found

    The use of biofeedback for gait retraining: A mapping review

    Get PDF
    Background: Biofeedback seems to be a promising tool to improve gait outcomes for both healthy individuals and patient groups. However, due to differences in study designs and outcome measurements, it remains uncertain how different forms of feedback affect gait outcomes. Therefore, the aim of this study is to review primary biomechanical literature which has used biofeedback to alter gait-related outcomes in human participants. Methods: Medline, Cinahl, Cochrane, SPORTDiscus and Pubmed were searched from inception to December 2017 using various keywords and the following MeSHterms: biofeedback, feedback, gait, walking and running. From the included studies, sixteen different study characteristics were extracted. Findings: In this mapping review 173 studies were included. The most common feedback mode used was visual feedback (42%, n=73) and the majority fed-back kinematic parameters (36%, n=62). The design of the studies were poor: only 8% (n=13) of the studies had both a control group and a retention test; 69% (n=120) of the studies had neither. A retention test after 6 months was performed in 3% (n=5) of the studies, feedback was faded in 9% (n=15) and feedback was given in the field rather than the laboratory in 4% (n=8) of the studies. Interpretation: Further work on biofeedback and gait should focus on the direct comparison between different modes of feedback or feedback parameters, along with better designed and field based studies

    Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: study protocol for a double-blind randomized controlled clinical trial

    Get PDF
    Background: The project proposes three innovative intervention techniques (treadmill training, mobility training with virtual reality and transcranial direct current stimulation that can be safely administered to children with cerebral palsy. The combination of transcranial stimulation and physical therapy resources will provide the training of a specific task with multiple rhythmic repetitions of the phases of the gait cycle, providing rich sensory stimuli with a modified excitability threshold of the primary motor cortex to enhance local synaptic efficacy and potentiate motor learning. Methods/design A prospective, double-blind, randomized, controlled, analytical, clinical trial will be carried out.Eligible participants will be children with cerebral palsy classified on levels I, II and III of the Gross Motor Function Classification System between four and ten years of age. The participants will be randomly allocated to four groups: 1) gait training on a treadmill with placebo transcranial stimulation; 2) gait training on a treadmill with active transcranial stimulation; 3) mobility training with virtual reality and placebo transcranial stimulation; 4) mobility training with virtual reality and active transcranial stimulation. Transcranial direct current stimulation will be applied with the anodal electrode positioned in the region of the dominant hemisphere over C3, corresponding to the primary motor cortex, and the cathode positioned in the supraorbital region contralateral to the anode. A 1 mA current will be applied for 20 minutes. Treadmill training and mobility training with virtual reality will be performed in 30-minute sessions five times a week for two weeks (total of 10 sessions). Evaluations will be performed on four occasions: one week prior to the intervention; one week following the intervention; one month after the end of the intervention;and 3 months after the end of the intervention. The evaluations will involve three-dimensional gait analysis, analysis of cortex excitability (motor threshold and motor evoked potential), Six-Minute Walk Test, Timed Up-and-Go Test, Pediatric Evaluation Disability Inventory, Gross Motor Function Measure, Berg Balance Scale, stabilometry, maximum respiratory pressure and an effort test. Discussion This paper offers a detailed description of a prospective, double-blind, randomized, controlled, analytical, clinical trial aimed at demonstrating the effect combining transcranial stimulation with treadmill and mobility training on functionality and primary cortex excitability in children with Cerebral Palsy classified on Gross Motor Function Classification System levels I, II and III. The results will be published and will contribute to evidence regarding the use of treadmill training on this population. Trial registration ReBEC RBR-9B5DH

    Digital therapeutics in neurology

    Get PDF

    Post-stroke rehabilitation of hand function based on Electromyography biofeedback

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    EMG Biofeedback Videogame System for the Gait Rehabilitation of Hemiparetic Individuals

    Get PDF
    Gemstone Team CHIPWe report a novel approach to electromyographic (EMG) biofeedback for post-stroke hemiparetic gait rehabilitation, using a videogame. An integrated hardware/software system facilitates gameplay of Tiger Woods PGA Tour 2004 in driving range mode by performing rehabilitation exercises. Real-time visual EMG biofeedback is provided as the patient performs exercises. Custom-built bioamplifiers and software collect, amplify, and filter the surface EMG signals from six lower-limb muscles, and score them by feature extraction. The ball is driven a distance proportional to each score. Exercises are scored by comparing the patient's EMG activation with target profiles. The user-friendly system is controlled by prompts on a personal computer. We envision two major benefits from this system. First, the biofeedback is offered in real-time, in a clear, intuitive form, and coupled with task-specific motions. Second, we hypothesize that adopting rehabilitation exercises to control a fun videogame will lead to greater adherence to the exercise regime, with accompanying improvements in gait

    Cerebral Palsy

    Get PDF
    Nowadays, cerebral palsy (CP) rehabilitation, along with medical and surgical interventions in children with CP, leads to better motor and postural control and can ensure ambulation and functional independence. In achieving these improvements, many modern practices may be used, such as comprehensive multidisciplinary assessment, clinical decision making, multilevel surgery, botulinum toxin applications, robotic ambulation applications, treadmill, and other walking aids to increase the quality and endurance of walking. Trainings are based on neurodevelopmental therapy, muscle training and strength applications, adaptive equipment and orthotics, communication, technological solves, and many others beyond the scope of this book. In the years of clinical and academic experiences, children with cerebral palsy have shown us that the world needs a book to give clinical knowledge to health professionals regarding these important issue. This book is an attempt to fulfill and to give “current steps” about CP. The book is intended for use by physicians, therapists, and allied health professionals who treat/rehabilitate children with CP. We focus on the recent concepts in the treatment of body and structure problems and describe the associated disability, providing suggestions for further reading. All authors presented the most frequently used and accepted treatment methods with scientifically proven efficacy and included references at the end of each chapter
    corecore