35,758 research outputs found

    Virtual Reality: A Tool for Improving the Teaching and Learning of Technology Education

    Get PDF
    This work dealt with technology education, its expectations and present state, especially in developing countries. It looked at virtual reality: its development, types, uses and how it can be applied to improve teaching and learning. It also looked at different works that compared virtual reality, and other educational technology tools were reviewed. Advantages of virtual reality were highlighted; these will include both social and academic issues. Immersive and non-immersive virtual reality for education were briefly discussed, looking at the applicability of each to teaching and learning, ease of use, cost-effectiveness and health implications

    Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality

    Get PDF
    Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational concepts as a future direction, and presents the challenges faced in implementing the IEIVR metaphor due to extended periods of immersion. Results from the conducted studies help in formulating guidelines for virtual reality and education researchers working in STEM education and training, and for educators and curriculum developers seeking to improve student engagement in the STEM fields

    Instructional design models for immersive virtual reality: a systematic literature review

    Get PDF
    The emergence of accessible virtual reality headsets in the past decade multiplied educational uses of immersive virtual reality. Higher education, in particular, has seen many such reports emerge. However, there are scarce frameworks for higher education professionals to plan and deploy immersive virtual reality within their pedagogical practice. To attain a perspective on this field, we conducted a systematic literature review using SCOPUS search, focusing on Instructional Design Models for Immersive Virtual Reality in online Higher Education. This review aimed to provide a comprehensive overview of these models, their respective phases, and distinctive characteristics. The review identified two categories of Instructional Design Models for Immersive Virtual Reality in Higher Education: 1) Models specific to such contexts, with aspects such as managing immersion time or providing prior contact with the immersive environment; 2) Models developed for other contexts and adapted to immersive virtual reality, addressing aspects such as the importance of creating objectives, assessment elements, or defining resource purpose. We conclude that current instructional models used for immersive virtual reality in higher education lack the combination of the overall pedagogical concerns with the specific ones for immersive virtual reality. Thus, we recommend further research to develop instruction models that combine both aspects of learning design concerns.This work was funded by the European Commission, under project REVEALING – Realisation of Virtual reality Learning environments (VRLEs) for Higher Education – Erasmus+ / Cooperation Partnerships 2021-1-DE01-KA220-HED-000032098. We also extend our thanks to all collaborators and partners involved. D. Pedrosa expresses gratitude to the Foundation for Science and Technology (FCT) and CIDTFF for their support under the Scientific Employment Stimulus 2017, within the framework of project CEECIND/00986/2017, as well as project UID/CED/00194/2020.info:eu-repo/semantics/publishedVersio

    The unexplored potential of virtual reality for cultural learning

    Full text link
    [EN] Educational technology tools that improve learning and foster engagement are constantly sought by teachers and researchers. In the domain of Computer-Assisted Language Learning a variety of tools, for instance blogs and podcasts, have been used to promote language and cultural learning (Shih, 2015). More recently, virtual reality has been identified as a technology with great potential for the creation of meaningful and contextualized learning experiences. Despite the  learning affordances of virtual reality, in language education most of the literature has focused on the low-immersive version, whereas research investigating highly immersive virtual environments has only emerged in recent years (e.g., Berti, 2019; Blyth, 2018). In other fields, the use of highly immersive virtual reality has been compared to traditional pedagogical resources and demonstrated that students’ learning improved with the use of virtual environments as compared to two-dimensional video and textbook learning conditions (Allcoat & von Mühlenen, 2018). Considering the potential learning benefits of this technology, this paper argues that longitudinal empirical research in language education is strongly needed to investigate its potential unexplored impact on language and cultural learning.Berti, M. (2021). The unexplored potential of virtual reality for cultural learning. The EuroCALL Review. 29(1):60-67. https://doi.org/10.4995/eurocall.2021.12809OJS6067291Allcoat, D., & von Mühlenen, A. (2018). Learning in virtual reality: Effects on performance, emotion, and engagement. Research in Learning Technology, 26, 1-13. https://doi.org/10.25304/rlt.v26.2140Barab, S. A., Hay, K. E., & Duffy, T. M. (1998). Grounded constructions and how technology can help. TechTrends, 43(2), 15-23. https://doi.org/10.1007/BF02818171Berti, M. (2019). Italian open education: virtual reality immersions for the language classroom. New Case Studies of Openness in and beyond the Language Classroom, Research-publishing. net, 37-47. https://doi.org/10.14705/rpnet.2019.37.965Blyth, C. (2018). Immersive technologies and language learning. Foreign Language Annals, 51(1), 225-232. https://doi.org/10.1111/flan.12327Chen, C. J. (2009). Theoretical bases for using virtual reality in education. Themes in Science and Technology Education, 2(1-2), 71-90.Dawley, L., & Dede, C. (2014). Situated learning in virtual worlds and immersive simulations. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 723-734). New York: Springer. https://doi.org/10.1007/978-1-4614-3185-5_58Fowler, C. (2015). Virtual reality and learning: Where is the pedagogy? British Journal of Educational Technology, 46(2), 412-422. https://doi.org/10.1111/bjet.12135Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. eLearning & Software for Education, 1, 133-141.Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners' attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014Jacobson, J. (2017). Authenticity in immersive design. In D., Liu, C., Dede, R., Huang, & J., Richards (Eds.), Virtual, augmented, and mixed realities in education (pp. 35-54). New York: Springer. https://doi.org/10.1007/978-981-10-5490-7_3Lin, T. J., & Lan, Y. J. (2015). Language learning in virtual reality environments: Past, present, and future. Journal of Educational Technology & Society, 18(4), 486-497.Liu, D., Bhagat, K. K., Gao, Y., Chang, T., & Huang, R. (2017). The potentials and trends of virtual reality in education. In D., Liu, C., Dede, R., Huang, & J., Richards (Eds.), Virtual augmented, and mixed realities in education (pp. 105-130). New York: Springer. https://doi.org/10.1007/978-981-10-5490-7_7Lloyd, A., Rogerson, S., & Stead, G. (2017). Imagining the potential for using virtual reality technologies in language learning. In M. Carrier, R. M. Damerow, & K. M. Bailey (Eds.), Digital language learning and teaching: Research, theory, and practice (pp. 222-234). Abingdon: Routledge. https://doi.org/10.4324/9781315523293-19Sadler, R. (2017). Virtual worlds and language education. In S. L. Thorne & S. May (Eds.), Language, education and technology (pp. 375-388). New York: Springer International Publishing. https://doi.org/10.1007/978-3-319-02237-6_29Schott, C., & Marshall, S. (2018). Virtual reality and situated experiential education: A conceptualization and exploratory trial. Journal of Computer Assisted Learning, 34(6), 843-852. https://doi.org/10.1111/jcal.12293Schwienhorst, K. (2002a). The state of VR: A meta-analysis of virtual reality tools in second language acquisition. Computer Assisted Language Learning, 15(3), 221-239. https://doi.org/10.1076/call.15.3.221.8186Schwienhorst, K. (2002b). Why virtual, why environments? Implementing virtual reality concepts in computer-assisted language learning. Simulation & Gaming, 33(2), 196-209. https://doi.org/10.1177/1046878102033002008Scrivner, O., Madewell, J., Buckley, C., & Perez, N. (2019). Best practices in the use of augmented and virtual reality technologies for SLA: Design, implementation, and feedback. In M. L. Carrió-Pastor (Ed.), Teaching language and teaching literature in virtual environments (pp. 55-72). New York: Springer. https://doi.org/10.1007/978-981-13-1358-5_4Shih, Y. C. (2015). A virtual walk-through London: Culture learning through a cultural immersion experience. Computer Assisted Language Learning, 28(5), 407-428. https://doi.org/10.1080/09588221.2013.851703Shih, Y. C. (2018). Contextualizing language learning with street view panoramas. In Y. Qian (Ed.), Integrating multi-user virtual environments in modern classrooms (pp. 74-91). Hershey: IGI Global. https://doi.org/10.4018/978-1-5225-3719-9.ch004Slater, M. & Wilbur, S. (1996). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603- 616. https://doi.org/10.1162/pres.1997.6.6.60

    Immersive safe oceans technology: Developing virtual onboard training episodes for maritime safety

    Get PDF
    © 2020 by the authors. This paper introduces four safety training episodes and virtual training technology called Immersive Safe Oceans which can be used in further education of professionals in immersive training scenarios. These episodes were developed for maritime safety and are under testing. Immersive Safe Oceans Technology is a cost-effective, portable technology that can be used on board just in time or in maritime training centers. Four introduced episodes, namely, (1) command bridge, (2) machine room, (3) crane, and (4) fire safety, illustrate how Immersive Safe Oceans technology can be used in various professional training scenarios. These episodes also emphasize the growing need for virtual reality training in the shipping industry. As a result, next generation learning will happen onboard in sophisticated virtual training centers

    How Affordances of Immersive Visualization Systems Affect Learning Outcomes through Aesthetic Experience

    Get PDF
    Virtual reality has received attention as an environment for learning, yet little is known about the effectiveness of bringing the immersive visualization systems into the university classrooms. Building upon prior literature on immersive technology and the theory of affordance, we develop a model investigating how the features afforded by an immersive visualization system escalate users’ engagement, which in turn increases their learning outcomes. We will test the model with undergraduate students who have experienced with an immersive visualization system in the classroom setting. We believe that our work will enrich the existing literature on virtual reality in education and provide insight into the design of immersive representations and the structure of immersive learning paradigm

    VR-Based Egocentric Vision Jenga Game Using Oculus Headset

    Get PDF
    This research demonstrates the development of the game JengaVR using an Egocentric View (First-person vision). The paper\u27s main idea was to promote VR technology in an innovative concept of creating a game in 3d Virtual Space and provide an immersive experience with human interaction. To Implement this game, we are using Unity3D, C#, and Oculus VR headset. Recently, virtual reality technology has advanced to the point that it has applications in entertainment, healthcare, education, civil engineering. Also, Mix reality is an amalgamation of Augmented reality and Virtual Reality. Furthermore, Virtual Reality is still emerging, and it has unaccountable possibilities.Keywords- Egocentric View; Virtual Reality; Unity3d; Oculus VR; Game Developmenthttps://ecommons.udayton.edu/stander_posters/3150/thumbnail.jp

    The Immersive Power of Augmented Reality

    Get PDF
    Augmented reality is one of the technologies that have received great attention and interest in recent years. In a world where the boundaries between the real and the virtual are blurring, this immersive technology enriches and complements the reality with digital content and allows people to gain a complete and real sense of the objects around them. Currently, the applications of augmented reality go beyond the domains of games and entertainment and are aimed at taking the full advantage of the technology in areas such as medicine, architecture, business, tourism, education and more. The current paper presents the essence of technology and types of augmented reality systems. The basic approaches for creating augmented reality applications are discussed. Specific examples of the application of the technology in the field of education are given-an augmented book and augmented reality educational projects, whose purpose is to make learning an interesting, immersive, engaging and motivating process

    An educational experience in ancient Rome to evaluate the impact of virtual reality on human learning processes

    Get PDF
    Immersive Virtual Reality technology has recently gained significant attention and is expanding its applications to various fields. It also has many advantages in education, as it allows to both simplify the explanation of complex topics through their visualization, and explore lost or unreachable environments. To evaluate the impact of immersive experiences on learning outcomes we developed an educational experience that lets users visit an ancient Roman Domus and provides information about daily life in Roman times. We designed a between-subjects data collection to investigate learning ratio, user experience, and cybersickness of participants through anonymous questionnaires. We collected 76 responses of participants (18–35 y.o.) divided into three conditions: a Immersive Virtual Reality experience, a slide-based lecture and a 2D desktop-based experience. Our results show that the virtual reality experience is considered more engaging and as effective as more traditional 2D and slide-based experiences in terms of learning

    Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Environment

    Get PDF
    This paper shows the early research findings of utilizing a virtual reality environment as an educational tool for the operation of a computerized numerical control (CNC) milling machine. Based off of a previous work, the Advanced Virtual Machining Lab (AVML), this project features a virtual environment in which a virtual CNC machine is fully operable, designed to allow STEM students and training professionals to learn the use of the CNC machine without the need to be in a physical lab. Users operate in the virtual environment using an immersive virtual reality headset (i.e. Oculus Rift) and standard input devices (i.e. mouse and keyboard), both of which combined make for easy movement and realistic visuals. On-screen tutorials allow users to learn about what they need to do to operate the machine without the need for outside instruction. While designing and perfecting this environment has been the primary focus of this project thus far, the research goal is to test the ease of use and the pedagogical effectiveness of the immersive technology as it relates to education in STEM fields. Initial usability studies for this environment featured students from the graduate level CAD/CAM-Theory and Advanced Applications (ME 54600) course at IUPUI. Results from the study were tabulated with a survey using a four-point Likert scale and several open-ended questions. Findings from the survey indicate that the majority of users found the environment realistic and easy to navigate, in addition to finding the immersive technology to be beneficial. Many also indicated that they felt comfortable navigating the environment without the need for additional assistance from the survey proctors. Full details on the first usability study, including data and discussion, can be found in this paper. The general consensus from the study was that, while some features needed refinement, the immersive environment helped them learn about the operation of a CNC machine. Additional usability studies will need to be undergone to refine said features before beginning the final study, in which students learning from the immersive virtual environment will be tested against students learning from traditional methods. Details on this last study will be discussed in the final paper, which will also discuss the methods used for preparing the environment, full results and detailed discussion on each of the usability studies, and conclusions on the usability and educational effectiveness of the immersive virtual reality technology in STEM education
    • …
    corecore