266 research outputs found

    Mobile network architecture evolution toward 5G

    Get PDF
    As a chain is as strong as its weakest element, so are the efficiency, flexibility, and robustness of a mobile network, which relies on a range of different functional elements and mechanisms. Indeed, the mobile network architecture needs particular attention when discussing the evolution of 3GPP EPS because it is the architecture that integrates the many different future technologies into one mobile network. This article discusses 3GPP EPS mobile network evolution as a whole, analyzing specific architecture properties that are critical in future 3GPP EPS releases. In particular, this article discusses the evolution toward a "network of functions," network slicing, and software-defined mobile network control, management, and orchestration. Furthermore, the roadmap for the future evolution of 3GPP EPS and its technology components is detailed and relevant standards defining organizations are listed.This work has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    SDN-based Flexible Resource Management and Service-Oriented Virtualization for 5G Mobile Networks and Beyond

    Get PDF
    This thesis examines how Software Defined Network (SDN) and Network Virtualization (NV) technologies can make 5G and beyond mobile networks more flexible, scalable and programmable to support the performance demands of the emerging heterogeneous applications. In this direction, concepts like mobile network slicing, multi-tenancy, and multi-connectivity have been investigated and their performance is analyzed. The SDN paradigm is used to enable flexible resource allocation to the end users, improve network resource utilization and avoid or rapidly solve the network congestion problems. The proposed network architectures are 3rd Generation Partnership Project (3GPP) standards compliant and integrate Open Network Foundation (ONF) SDN specifications to ensure seamless interoperability between different standards and backward/forward compatibility. Novel mechanisms and algorithms to efficiently manage the resources of evolving 5G Time-Division Duplex (TDD) networks in a flexible manner are introduced. These mechanisms enable formation of virtual cells on-demand which allows diverse resource utilization from multiple eNBs to the users. Within the scope of this thesis, SDN-based frameworks to enhance the QoE of end user applications considering Time Division-Long Term Evolution (TD-LTE) small cells have also been developed and network resource sharing scenarios with Frequency-Division Duplex (FDD)/TDD coexistence has been studied. In addition, this thesis also proposes and investigates a novel service-oriented network slicing concept for evolving 5G TDD networks which involve traffic prediction mechanisms and includes user mobility. An analytical model is also introduced that formulates the network slice resource allocation as a weighted optimization problem. The evaluations of the proposed solutions are performed using 3GPP standard compliant simulation settings. The proposed solutions have been compared with the state-of-the art schemes and the performance gains offered by the proposed solutions have been demonstrated. Performance is evaluated considering metrics such as throughput, delay, network resource utilization etc. The Mean Opinion Score (MOS) metric is used for evaluating the Quality of Experience (QoE) for end-user applications. With the help of SDN-based network management algorithms investigated in this work, it is shown how 5G+ networks can be managed efficiently, while at the same time provide enhanced flexibility and programmability to improve the performance of diverse applications and services delivered over the network to the end users

    Slicing on the road: enabling the automotive vertical through 5G network softwarization

    Get PDF
    The demanding requirements of Vehicle-to-Everything (V2X) applications, such as ultra-low latency, high-bandwidth, highly-reliable communication, intensive computation and near-real time data processing, raise outstanding challenges and opportunities for fifth generation (5G) systems. By allowing an operator to flexibly provide dedicated logical networks with (virtualized) functionalities over a common physical infrastructure, network slicing candidates itself as a prominent solution to support V2X over upcoming programmable and softwarized 5G systems in a business-agile manner. In this paper, a network slicing framework is proposed along with relevant building blocks and mechanisms to support V2X applications by flexibly orchestrating multi-access and edge-dominated 5G network infrastructures, especially with reference to roaming scenarios. Proof of concept experiments using the Mininet emulator showcase the viability and potential benefits of the proposed framework for cooperative driving use cases1812não temMinistério da Ciência, Tecnologia, Inovações e Comunicações - MCTICThe research of Prof. Christian Esteve Rothenberg was partially supported by the H2020 4th EUBR Collaborative Call, under the grant agreement number 777067 (NECOS - Novel Enablers for Cloud Slicing), funded by the European Commission and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC) through RNP and CTI

    Traffic control for energy harvesting virtual small cells via reinforcement learning

    Get PDF
    Due to the rapid growth of mobile data traffic, future mobile networks are expected to support at least 1000 times more capacity than 4G systems. This trend leads to an increasing energy demand from mobile networks which raises both economic and environmental concerns. Energy costs are becoming an important part of OPEX by Mobile Network Operators (MNOs). As a result, the shift towards energy-oriented design and operation of 5G and beyond systems has been emphasized by academia, industries as well as standard bodies. In particular, Radio Access Network (RAN) is the major energy consuming part of cellular networks. To increase the RAN efficiency, Cloud Radio Access Network (CRAN) has been proposed to enable centralized cloud processing of baseband functions while Base Stations (BSs) are reduced to simple Radio Remote Heads (RRHs). The connection between the RRHs and central cloud is provided by high capacity and very low latency fronthaul. Flexible functional splits between local BS sites and a central cloud are then proposed to relax the CRAN fronthaul requirements via partial processing of baseband functions at the local BS sites. Moreover, Network Function Virtualization (NFV) and Software Defined Networking (SDN) enable flexibility in placement and control of network functions. Relying on SDN/NFV with flexible functional splits, network functions of small BSs can be virtualized and placed at different sites of the network. These small BSs are known as virtual Small Cells (vSCs). More recently, Multi-access Edge Computing (MEC) has been introduced where BSs can leverage cloud computing capabilities and offer computational resources on demand basis. On the other hand, Energy Harvesting (EH) is a promising technology ensuring both cost effectiveness and carbon footprint reduction. However, EH comes with challenges mainly due to intermittent and unreliable energy sources. In EH Base Stations (EHBSs), it is important to intelligently manage the harvested energy as well as to ensure energy storage provision. Consequently, MEC enabled EHBSs can open a new frontier in energy-aware processing and sharing of processing units according to flexible functional split options. The goal of this PhD thesis is to propose energy-aware control algorithms in EH powered vSCs for efficient utilization of harvested energy and lowering the grid energy consumption of RAN, which is the most power consuming part of the network. We leverage on virtualization and MEC technologies for dynamic provision of computational resources according to functional split options employed by the vSCs. After describing the state-of-the-art, the first part of the thesis focuses on offline optimization for efficient harvested energy utilization via dynamic functional split control in vSCs powered by EH. For this purpose, dynamic programming is applied to determine the performance bound and comparison is drawn against static configurations. The second part of the thesis focuses on online control methods where reinforcement learning based controllers are designed and evaluated. In particular, more focus is given towards the design of multi-agent reinforcement learning to overcome the limitations of centralized approaches due to complexity and scalability. Both tabular and deep reinforcement learning algorithms are tailored in a distributed architecture with emphasis on enabling coordination among the agents. Policy comparison among the online controllers and against the offline bound as well as energy and cost saving benefits are also analyzed.Debido al rápido crecimiento del tráfico de datos móviles, se espera que las redes móviles futuras admitan al menos 1000 veces más capacidad que los sistemas 4G. Esta tendencia lleva a una creciente demanda de energía de las redes móviles, lo que plantea preocupaciones económicas y ambientales. Los costos de energía se están convirtiendo en una parte importante de OPEX por parte de los operadores de redes móviles (MNO). Como resultado, la academia, las industrias y los organismos estándar han enfatizado el cambio hacia el diseño orientado a la energía y la operación de sistemas 5G y más allá de los sistemas. En particular, la red de acceso por radio (RAN) es la principal parte de las redes celulares que consume energía. Para aumentar la eficiencia de la RAN, se ha propuesto Cloud Radio Access Network (CRAN) para permitir el procesamiento centralizado en la nube de las funciones de banda base, mientras que las estaciones base (BS) se reducen a simples cabezales remotos de radio (RRH). La conexión entre los RRHs y la nube central es proporcionada por una capacidad frontal de muy alta latencia y muy baja latencia. Luego se proponen divisiones funcionales flexibles entre los sitios de BS locales y una nube central para relajar los requisitos de red de enlace CRAN a través del procesamiento parcial de las funciones de banda base en los sitios de BS locales. Además, la virtualización de funciones de red (NFV) y las redes definidas por software (SDN) permiten flexibilidad en la colocación y el control de las funciones de red. Confiando en SDN / NFV con divisiones funcionales flexibles, las funciones de red de pequeñas BS pueden virtualizarse y ubicarse en diferentes sitios de la red. Estas pequeñas BS se conocen como pequeñas celdas virtuales (vSC). Más recientemente, se introdujo la computación perimetral de acceso múltiple (MEC) donde los BS pueden aprovechar las capacidades de computación en la nube y ofrecer recursos computacionales según la demanda. Por otro lado, Energy Harvesting (EH) es una tecnología prometedora que garantiza tanto la rentabilidad como la reducción de la huella de carbono. Sin embargo, EH presenta desafíos principalmente debido a fuentes de energía intermitentes y poco confiables. En las estaciones base EH (EHBS), es importante administrar de manera inteligente la energía cosechada, así como garantizar el suministro de almacenamiento de energía. En consecuencia, los EHBS habilitados para MEC pueden abrir una nueva frontera en el procesamiento con conciencia energética y el intercambio de unidades de procesamiento de acuerdo con las opciones de división funcional flexible. El objetivo de esta tesis doctoral es proponer algoritmos de control conscientes de la energía en vSC alimentados por EH para la utilización eficiente de la energía cosechada y reducir el consumo de energía de la red de RAN, que es la parte más consumidora de la red. Aprovechamos las tecnologías de virtualización y MEC para la provisión dinámica de recursos computacionales de acuerdo con las opciones de división funcional empleadas por los vSC. La primera parte de la tesis se centra en la optimización fuera de línea para la utilización eficiente de la energía cosechada a través del control dinámico de división funcional en vSC con tecnología EH. Para este propósito, la programación dinámica se aplica para determinar el rendimiento limitado y la comparación se realiza con configuraciones estáticas. La segunda parte de la tesis se centra en los métodos de control en línea donde se diseñan y evalúan los controladores basados en el aprendizaje por refuerzo. En particular, se presta más atención al diseño de aprendizaje de refuerzo de múltiples agentes para superar las limitaciones de los enfoques centralizados debido a la complejidad y la escalabilidad. También se analiza la comparación de políticas entre los controladores en línea y contra los límites fuera de línea,Postprint (published version
    corecore