9,030 research outputs found

    Transforming Large-Scale Virtualized Networks: Advancements in Latency Reduction, Availability Enhancement, and Security Fortification

    Get PDF
    In today’s digital age, the increasing demand for networks, driven by the proliferation of connected devices, data-intensive applications, and transformative technologies, necessitates robust and efficient network infrastructure. This thesis addresses the challenges posed by virtualization in 5G networking and focuses on enhancing next-generation Radio Access Networks (RANs), particularly Open-RAN (O-RAN). The objective is to transform virtualized networks into highly reliable, secure, and latency-aware systems. To achieve this, the thesis proposes novel strategies for virtual function placement, traffic steering, and virtual function security within O-RAN. These solutions utilize optimization techniques such as binary integer programming, mixed integer binary programming, column generation, and machine learning algorithms, including supervised learning and deep reinforcement learning. By implementing these contributions, network service providers can deploy O-RAN with enhanced reliability, speed, and security, specifically tailored for Ultra-Reliable and Low Latency Communications use cases. The optimized RAN virtualization achieved through this research unlocks a new era in network architecture that can confidently support URLLC applications, including Autonomous Vehicles, Industrial Automation and Robotics, Public Safety and Emergency Services, and Smart Grids

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems
    • …
    corecore