1,141 research outputs found

    Statistical Methods for Semiconductor Manufacturing

    Get PDF
    In this thesis techniques for non-parametric modeling, machine learning, filtering and prediction and run-to-run control for semiconductor manufacturing are described. In particular, algorithms have been developed for two major applications area: - Virtual Metrology (VM) systems; - Predictive Maintenance (PdM) systems. Both technologies have proliferated in the past recent years in the semiconductor industries, called fabs, in order to increment productivity and decrease costs. VM systems aim of predicting quantities on the wafer, the main and basic product of the semiconductor industry, that may be physically measurable or not. These quantities are usually ’costly’ to be measured in economic or temporal terms: the prediction is based on process variables and/or logistic information on the production that, instead, are always available and that can be used for modeling without further costs. PdM systems, on the other hand, aim at predicting when a maintenance action has to be performed. This approach to maintenance management, based like VM on statistical methods and on the availability of process/logistic data, is in contrast with other classical approaches: - Run-to-Failure (R2F), where there are no interventions performed on the machine/process until a new breaking or specification violation happens in the production; - Preventive Maintenance (PvM), where the maintenances are scheduled in advance based on temporal intervals or on production iterations. Both aforementioned approaches are not optimal, because they do not assure that breakings and wasting of wafers will not happen and, in the case of PvM, they may lead to unnecessary maintenances without completely exploiting the lifetime of the machine or of the process. The main goal of this thesis is to prove through several applications and feasibility studies that the use of statistical modeling algorithms and control systems can improve the efficiency, yield and profits of a manufacturing environment like the semiconductor one, where lots of data are recorded and can be employed to build mathematical models. We present several original contributions, both in the form of applications and methods. The introduction of this thesis will be an overview on the semiconductor fabrication process: the most common practices on Advanced Process Control (APC) systems and the major issues for engineers and statisticians working in this area will be presented. Furthermore we will illustrate the methods and mathematical models used in the applications. We will then discuss in details the following applications: - A VM system for the estimation of the thickness deposited on the wafer by the Chemical Vapor Deposition (CVD) process, that exploits Fault Detection and Classification (FDC) data is presented. In this tool a new clustering algorithm based on Information Theory (IT) elements have been proposed. In addition, the Least Angle Regression (LARS) algorithm has been applied for the first time to VM problems. - A new VM module for multi-step (CVD, Etching and Litography) line is proposed, where Multi-Task Learning techniques have been employed. - A new Machine Learning algorithm based on Kernel Methods for the estimation of scalar outputs from time series inputs is illustrated. - Run-to-Run control algorithms that employ both the presence of physical measures and statistical ones (coming from a VM system) is shown; this tool is based on IT elements. - A PdM module based on filtering and prediction techniques (Kalman Filter, Monte Carlo methods) is developed for the prediction of maintenance interventions in the Epitaxy process. - A PdM system based on Elastic Nets for the maintenance predictions in Ion Implantation tool is described. Several of the aforementioned works have been developed in collaborations with major European semiconductor companies in the framework of the European project UE FP7 IMPROVE (Implementing Manufacturing science solutions to increase equiPment pROductiVity and fab pErformance); such collaborations will be specified during the thesis, underlying the practical aspects of the implementation of the proposed technologies in a real industrial environment

    a convolutional autoencoder approach for feature extraction in virtual metrology

    Get PDF
    Abstract Exploiting the huge amount of data collected by industries is definitely one of the main challenges of the so-called Big Data era. In this sense, Machine Learning has gained growing attention in the scientific community, as it allows to extract valuable information by means of statistical predictive models trained on historical process data. In Semiconductor Manufacturing, one of the most extensively employed data-driven applications is Virtual Metrology, where a costly or unmeasurable variable is estimated by means of cheap and easy to obtain measures that are already available in the system. Often, these measures are multi-dimensional, so traditional Machine Learning algorithms cannot handle them directly. Instead, they require feature extraction, that is a preliminary step where relevant information is extracted from raw data and converted into a design matrix. Features are often hand-engineered and based on specific domain knowledge. Moreover, they may be difficult to scale and prone to information loss, affecting the effectiveness and maintainability of machine learning procedures. In this paper, we present a Deep Learning method for semi-supervised feature extraction based on Convolutional Autoencoders that is able to overcome the aforementioned problems. The proposed method is tested on a real dataset for Etch rate estimation. Optical Emission Spectrometry data, that exhibit a complex bi-dimensional time and wavelength evolution, are used as input

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    Virtual metrology for semiconductor manufacturing applications

    Get PDF
    Per essere competitive nel mercato, le industrie di semiconduttori devono poter raggiungere elevati standard di produzione a un prezzo ragionevole. Per motivi legati tanto ai costi quanto ai tempi di esecuzione, una strategia di controllo della qualità che preveda la misurazione completa del prodotto non è attuabile; i test sono eettuati su un ristretto campione dei dati originali. Il traguardo del presente lavoro di Tesi è lo studio e l'implementazione, attraverso metodologie di modellistica tipo non lineare, di un algoritmo di metrologia virtuale (Virtual Metrology) d'ausilio al controllo di processo nella produzione di semiconduttori. Infatti, la conoscenza di una stima delle misure non realmente eseguite (misure virtuali) può rappresentare un primo passo verso la costruzione di sistemi di controllo di processo e controllo della qualità sempre più ranati ed ecienti. Da un punto di vista operativo, l'obiettivo è fornire la più accurata stima possibile delle dimensioni critiche a monte della fase di etching, a partire dai dati disponibili (includendo misurazioni da fasi di litograa e deposizione e dati di processo - ove disponibili). Le tecniche statistiche allo stato dell'arte analizzate in questo lavoro comprendono: - multilayer feedforward networks; Confronto e validazione degli algoritmi presi in esame sono stati possibili grazie ai data-set forniti da un'industria manifatturiera di semiconduttori. In conclusione, questo lavoro di Tesi rappresenta un primo passo verso la creazione di un sistema di controllo di processo e controllo della qualità evoluto e essibile, che abbia il ne ultimo di migliorare la qualità della produzione.ope

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point

    Virtual metrology for plasma etch processes.

    Get PDF
    Plasma processes can present dicult control challenges due to time-varying dynamics and a lack of relevant and/or regular measurements. Virtual metrology (VM) is the use of mathematical models with accessible measurements from an operating process to estimate variables of interest. This thesis addresses the challenge of virtual metrology for plasma processes, with a particular focus on semiconductor plasma etch. Introductory material covering the essentials of plasma physics, plasma etching, plasma measurement techniques, and black-box modelling techniques is rst presented for readers not familiar with these subjects. A comprehensive literature review is then completed to detail the state of the art in modelling and VM research for plasma etch processes. To demonstrate the versatility of VM, a temperature monitoring system utilising a state-space model and Luenberger observer is designed for the variable specic impulse magnetoplasma rocket (VASIMR) engine, a plasma-based space propulsion system. The temperature monitoring system uses optical emission spectroscopy (OES) measurements from the VASIMR engine plasma to correct temperature estimates in the presence of modelling error and inaccurate initial conditions. Temperature estimates within 2% of the real values are achieved using this scheme. An extensive examination of the implementation of a wafer-to-wafer VM scheme to estimate plasma etch rate for an industrial plasma etch process is presented. The VM models estimate etch rate using measurements from the processing tool and a plasma impedance monitor (PIM). A selection of modelling techniques are considered for VM modelling, and Gaussian process regression (GPR) is applied for the rst time for VM of plasma etch rate. Models with global and local scope are compared, and modelling schemes that attempt to cater for the etch process dynamics are proposed. GPR-based windowed models produce the most accurate estimates, achieving mean absolute percentage errors (MAPEs) of approximately 1:15%. The consistency of the results presented suggests that this level of accuracy represents the best accuracy achievable for the plasma etch system at the current frequency of metrology. Finally, a real-time VM and model predictive control (MPC) scheme for control of plasma electron density in an industrial etch chamber is designed and tested. The VM scheme uses PIM measurements to estimate electron density in real time. A predictive functional control (PFC) scheme is implemented to cater for a time delay in the VM system. The controller achieves time constants of less than one second, no overshoot, and excellent disturbance rejection properties. The PFC scheme is further expanded by adapting the internal model in the controller in real time in response to changes in the process operating point
    • …
    corecore