969 research outputs found

    Explanation Shift: Investigating Interactions between Models and Shifting Data Distributions

    Full text link
    As input data distributions evolve, the predictive performance of machine learning models tends to deteriorate. In practice, new input data tend to come without target labels. Then, state-of-the-art techniques model input data distributions or model prediction distributions and try to understand issues regarding the interactions between learned models and shifting distributions. We suggest a novel approach that models how explanation characteristics shift when affected by distribution shifts. We find that the modeling of explanation shifts can be a better indicator for detecting out-of-distribution model behaviour than state-of-the-art techniques. We analyze different types of distribution shifts using synthetic examples and real-world data sets. We provide an algorithmic method that allows us to inspect the interaction between data set features and learned models and compare them to the state-of-the-art. We release our methods in an open-source Python package, as well as the code used to reproduce our experiments.Comment: arXiv admin note: text overlap with arXiv:2210.1236

    A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks

    Full text link
    This paper introduces a novel concept from coalitional game theory which allows the dynamic formation of coalitions among wireless nodes. A simple and distributed merge and split algorithm for coalition formation is constructed. This algorithm is applied to study the gains resulting from the cooperation among single antenna transmitters for virtual MIMO formation. The aim is to find an ultimate transmitters coalition structure that allows cooperating users to maximize their utilities while accounting for the cost of coalition formation. Through this novel game theoretical framework, the wireless network transmitters are able to self-organize and form a structured network composed of disjoint stable coalitions. Simulation results show that the proposed algorithm can improve the average individual user utility by 26.4% as well as cope with the mobility of the distributed users.Comment: This paper is accepted for publication at the IEEE ICC Workshop on Cooperative Communications and Networkin

    Strategic and operational services for workload management in the cloud

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework

    Leveraging Explainable AI to Support Cryptocurrency Investors

    Get PDF
    In the last decade, cryptocurrency trading has attracted the attention of private and professional traders and investors. To forecast the financial markets, algorithmic trading systems based on Artificial Intelligence (AI) models are becoming more and more established. However, they suffer from the lack of transparency, thus hindering domain experts from directly monitoring the fundamentals behind market movements. This is particularly critical for cryptocurrency investors, because the study of the main factors influencing cryptocurrency prices, including the characteristics of the blockchain infrastructure, is crucial for driving experts’ decisions. This paper proposes a new visual analytics tool to support domain experts in the explanation of AI-based cryptocurrency trading systems. To describe the rationale behind AI models, it exploits an established method, namely SHapley Additive exPlanations, which allows experts to identify the most discriminating features and provides them with an interactive and easy-to-use graphical interface. The simulations carried out on 21 cryptocurrencies over a 8-year period demonstrate the usability of the proposed tool

    Decentralized Coalition Formation with Agent-based Combinatorial Heuristics

    Get PDF
    A steadily growing pervasion of the energy distribution grid with communication technology is widely seen as an enabler for new computational coordination techniques for renewable, distributed generation as well as for bundling with controllable consumers. Smart markets will foster a decentralized grid management. One important task as prerequisite to decentralized management is the ability to group together in order to jointly gain enough suitable flexibility and capacity to assume responsibility for a specific control task in the grid. In self-organized smart grid scenarios, grouping or coalition formation has to be achieved in a decentralized and situation aware way based on individual capabilities. We present a fully decentralized coalition formation approach based on an established agent-based heuristics for predictive scheduling with the additional advantage of keeping all information about local decision base and local operational constraints private. Two closely interlocked optimization processes orchestrate an overall procedure that adapts a coalition structure to best suit a given set of energy products. The approach is evaluated in several simulation scenarios with different type of established models for integrating distributed energy resources and is also extended to the induced use case of surplus distribution using basically the same algorithm

    CEO and Board Characteristics as Determinants of Private Benefits of Control: Evidence from the Russian Stock Exchange

    Get PDF
    This paper investigates whether and how various characteristics of CEOs and corporate boards are related to the severity of corporate governance problems within firms. The latter is proxied by private benefits of control, which we measure for dual class stock firms using the voting premium approach. Our empirical analysis is based on data from Russia and takes advantage of the extreme corporate governance problems in the country, considerable variation in corporate governance practices across firms and over time, and presence of a large and exogenously created (during the process of privatization) group of dual class stock companies. The data are assembled from the RTS, SKRIN and SPARK databases and include over 200 firms observed in 1997-2009, with over 1000 observations in total. Our econometric analysis suggests a quadratic relationship between private benefits of control and CEO ownership with a minimum at about 4% CEO ownership, a positive association between CEO tenure and private benefits, and a quadratic in CEO age with a dip in private benefits at about 52 years of age. There is also a quadratic relationship between private benefits of control and board size, implying the optimality of medium-sized (about 9-10 directors) boards. We find no gender effects on private benefits of control.CEO, corporate board, private benefits of control, dual-class stock firms, Russia

    Collaborative Networks, Decision Systems, Web Applications and Services for Supporting Engineering and Production Management

    Get PDF
    This book focused on fundamental and applied research on collaborative and intelligent networks and decision systems and services for supporting engineering and production management, along with other kinds of problems and services. The development and application of innovative collaborative approaches and systems are of primer importance currently, in Industry 4.0. Special attention is given to flexible and cyber-physical systems, and advanced design, manufacturing and management, based on artificial intelligence approaches and practices, among others, including social systems and services
    • …
    corecore