279 research outputs found

    Virtual machines In Education

    Get PDF
    Abstract To provide education and particularly providing practical educational experiences to the students in the field of computing and information technology related courses including practical experience in the field of Networking, System Administration, and Operating Systems needs a lot of resources for the institution. Because this level of technical education can’t be provided only theoretically, students also need hands-on practical experience, and providing practical experience faces a lot of problems such as lack of funding and physical space, risks and threats to the network environment when we attempt to provide real, physical laboratory for experiments. This problem can be solved by developing a virtual environment for delivering students practical education. In this report we will look into different technologies used for virtualization today and do a comparative study. We will also explore some of the institutions, which are using virtual machines based environment to provide students practical experience in the field of computing and information Technology. And see how peoples are getting benefits from using virtual machines. We present how networks of virtual machines can be beneficiary for computing and information technology student and institutions by providing necessary environment in virtual network

    Lightweight Environment for Cyber Security Education

    Get PDF
    The use of physical systems and Virtual Machines has become inefficient and expensive for creating tailored, hands-on exercises for providing cyber security training. The main purpose of this project is to directly address these issues faced in cyber security education with the help of Docker containers. Using Docker, a lightweight and automated platform was developed for creating, sharing, and managing hands-on exercises. With the help of orchestration tools, this platform provides a centralized point to monitor and control the systems and exercises with a high degree of automation. In a classroom/lab environment, this infrastructure enables instructors and students not only to share exercises but also helps create and deploy exercises more easily. By streamlining the end to end delivery and deployment of the exercises, instructors can now efficiently make use of the class/lab hours in educating the students rather than performing system administration tasks

    Using a Virtual Computing Laboratory to Foster Collaborative Learning for Information Security and Information Technology Education

    Get PDF
    Virtual computer laboratories have been an excellent technological solution to the problem of providing students with hands-on experimentation in information technology fields such as information security in a cost effective and secure manner. A virtual computer laboratory was utilized in this work as a collaborative environment for student learning with the goal of measuring its effect on student learning and attitudes toward laboratory assignments. Experiments were carried out utilizing specially-designed computer-based laboratory activities that included student assessments and surveys upon their completion. The experiments involved both small groups and individual students completing their respective laboratory activities and subsequent assessments/surveys. The analysis of the data collected from both versions of the activity showed that students who performed the collaborative version of the activity benefited more than students who completed it on their own with respect to their learning and attitudes towards the subject areas covered in the laboratory activities

    Internet of things for medication control: e-health architecture and service implementation

    Get PDF
    The use of Radio Frequency Identification technology (RFID) in medical context enables drug identification but also a rapid and, of course, precise identification of patients, physicians, nurses or any other health caregiver. Combining RFID tag identification with structured and secure Internet of Things (IoT) solutions, one can establish a ubiquitous and quick access to any type of medical related records, as long as one can control and adequately secure all the Internet mediated interactions. This paper presents an e-Health service architecture, along with the corresponding Internet of Things prototype implementation, that makes use of RFID tags and Electronic Product Codes (EPC) standards, in order to easily establish in a ubiquitous manner a medication control system. The system, presented and tested, has a web interface and allowed for a first evaluation of the e-health proposed service. As the service is mainly focused on elderly Ambient Assisted Living (AAL) solutions, all these technologies - RFID, EPC, Object Naming Service (ONS) and IoT – have been integrated into a suitable system, able to promote better patient/physician, patient/nurse and, generally, any patient/health caregiver, interactions. The whole prototype service, entitled "RFID-based IoT for Medication Control", and its web interface are presented and evaluated.FEDER Funds through the Programa Operacional Fatores de Competitividade – COMPETE and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-02267

    DVCL:A Distributed Virtual Computer Lab for Security and Network Education

    Get PDF
    Teaching networking and IT security in higher education requires a safeplayground for students, where they can safely carry out hands-on exercises.This safe playground is known as a computer lab. Universities have todesign and to provide such a lab with respect to certain criteria, e.g.technical opportunities, educational requirements and demands of thelearners. Since there is no one-size-fits-all lab, the labs will be designed tofit into a certain context and thus have own strengths and weaknesses.In this thesis, we investigate and work with two established labs, whichwere designed for hands-on experiences in networking and it security courses.These labs are predominantly different but have an essential overlap ineducational requirements.One lab is developed by the Open University. It is dedicated for distancelearning. It is based on virtualization and every student is able to startthis lab on his own computer. Students can work out exercises wheneverand wherever they want. A shortcoming however is that students have towork alone, (distant) group work is not possible due to the isolated labarchitecture. This lab is the technical base for our research.The other lab is developed by the Cologne University. It is a physicallab, dedicated for on-campus courses and thus it is not portable. Butstudents can meet in the lab, work in groups and are able to get supportfrom a course advisor, who is also able to verify exercises. A shortcominghowever is that students must be present (they have to travel to theuniversity) and they are dependent on the opening hours of the laboratoryand the availability of the course advisers.In two research parts, we show how such two different lab approachescan be combined and what can be achieved.The first research part is about design issues.Initially, we enable group work in our lab for distance education, sincegroup work is an essential part in on-campus classes. Also remote studentsshould be able to work together. Since the lab is designed as an isolatedsystem, the challenge is to connect two of them on the network level butwithout creating a potential bridge between the isolated and the outsideworld. We achieved this by adding a communication interface to the labarchitecture. This communication interface consists of a ghost host toextract and inject network packets, and a remote bridge endpoint, totransport these packets between remote ghost hosts across an intermediateconnection, e.g. the internet. The developed prototype is called DistributedVirtual Computer Lab (DVCL) and enables to connect two or more distantlabs while preserving the isolated character.The DVCL is then extended and improved by a central authority (CA).While the point-to-point connection of the communication interface canconnect two remote networks in a handy way, more connections requirecareful planning by the students. We show that a CA simplifies the usageof our DVCL for the students (and also for academic staff) and in additionto it avoids administrative configuration errors while connecting remotelabs, e.g. a circular flow which leads to an unusable lab.The first part is completed by two applicability enhancements. Thefirst enhancement covers and resolves security issues in order to pushour prototypical implementation of the DVCL and the CA closer to aproductive learning environment. The second enhancement introduces aGraphical User Interface to increase the usability of the DVCL.The second research part is about educational aspects.In the first part, we assume that working independent from a physicalon-campus lab as well as group work is essential for our students. Ourevaluation of more than 200 students participating in an on-campus networkingcourse shows, that nearly half of the students actually say, thatthey would like to work independently from the university at least partiallyand they would welcome the introduction of an e-learning system. Inaddition, a predominant majority think of working in groups as well asreceiving guidance and feedback as crucial to their learning success. Thisresult justifies and confirms our research and also reveals an additional requirement.The challenge is to provide feedback and guidance to a student, who isworking on an exercise and a human course advisor is not available. Thisis e.g. when students use the DVCL at home in the evening hours. Weshow, that captured network traffic of a lab can give some indication ofwhat a student has already configured according to a certain exercise. Weuse this insight to develop an Electronic Exercise Assistant. This softwareprogram is able to recognize the progress of an exercise and can provideappropriate feedback and support, based on preloaded rules and conditions.This significantly improves the learning situation for students workingremotely in lab. Besides this automatic support, the exercise assistant canverify intermediate and complete solutions of an exercise.The second part is completed by an educational enhancement. Ourevaluation and also own observations show, that a lab is more than aroom with computer and network facilities. Rather it is a social placewhere students e.g. meet, form learning groups, talk and discuss. Weuse these insights and enhance the DVCL to support social interactions.Based on our on-campus lab as source, we model a set of communicational,organizational as well as educational activities and implement them in ourDVCL. The result shows, that our DVCL prototype is no longer a technicalplatform but a virtual place, where students can meet, communicate,arrange learning groups, exchange experiences and work on exercises.This thesis shows that aspects of our two different lab environments canbe combined. Our resulting Distributed Virtual Computer Lab incorporatesstrengths of each source lab. It is a gain for distance teaching as well as foron-campus classes. Remote students are now able to utilize the lab being avirtual classroom, where they can learn in groups, assisted by an electronicadvisor and without the need for a face-to-face meeting. On-campus classescan offer students a new learning environment, where they can learn in aclassroom character without the need to travel to the university

    Towards Establishing a Change Management Process at an Academic Research Laboratory Network

    Get PDF
    This report focuses on the evaluation and development of a change management process for the Regis University Academic Research Network (ARNe), and specifically the SEAD Practicum. The author originally proposed expanding on a security audit performed on the ARNe in 2008, and researched, evaluated and presents several risk assessment methodologies. This broad approach was later focused on the practical aspects of developing a change management process for the ARNe/SEAD Practicum, based on researching applicable standards and best practice guidance. A management questionnaire and user survey were developed and distributed to obtain valuable opinions and perspectives from the individuals most directly involved with the administration and use of the ARNe and SEAD Practicum portal

    LR&TS Annual Report 2006-2007

    Get PDF
    corecore