6,076 research outputs found

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Their memory:exploring veterans’ voices, virtual reality and collective memory

    Get PDF
    This paper focuses on the virtual reality (VR) project Their Memory and details the development and evaluation of virtual reality environments and experiences with respect to its impact on young people (14-35 demographic) with the narratives of veterans in Scotland. As part of the AHRC Immersive Experiences program, Their Memory was created to explore how game design techniques and immersive technology could be used to enhance existing historical research and enrich narratives to bring expansive experiences to hard-to-reach audiences. The project worked directly with the veterans’ charity, Poppyscotland, to create an environment and experience that would resonate with new audiences, and explore documentary and storytelling techniques for the commemoration of war and conflict. The design of the project evolved through co-design sessions with veterans and young people and culminated in the creation of a short, thought-provoking, narrative-driven experience. The VR experience enabled players to connect with the memories of veterans in Scotland and exploring the different conflicts or situations they experienced and how they make sense of them. The project brought together cross-sector expertise to research how immersive experiences can help memory-based organizations in engaging with wider audiences, raise awareness, and diversify current learning outputs. The paper details the design and development of the Virtual Reality project, through co-design, and how this engaged the audience and evolved the experience created. The paper includes a summative evaluation of events conducted with schoolchildren to assess the project and concludes with how the project evidences impact upon audiences and the potential for both technology and the experience

    Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks

    Get PDF
    Virtual reality (VR) has been brought closer to the general public over the past decade as it has become increasingly available for desktop and mobile platforms. As a result, consumer-grade VR may redefine how people learn by creating an engaging “hands-on” training experience. Today, VR applications leverage rich interactivity in a virtual environment without real-world consequences to optimize training programs in companies and educational institutions. Therefore, the main objective of this article was to improve the collaboration and communication practices in 3D virtual worlds with VR and metaverse focused on the educational and productive sector in smart factory. A key premise of our work is that the characteristics of the real environment can be replicated in a virtual world through digital twins, wherein new, configurable, innovative, and valuable ways of working and learning collaboratively can be created using avatar models. To do so, we present a proposal for the development of an experimental framework that constitutes a crucial first step in the process of formalizing collaboration in virtual environments through VR-powered metaverses. The VR system includes functional components, object-oriented configurations, advanced core, interfaces, and an online multi-user system. We present the study of the first application case of the framework with VR in a metaverse, focused on the smart factory, that shows the most relevant technologies of Industry 4.0. Functionality tests were carried out and evaluated with users through usability metrics that showed the satisfactory results of its potential educational and commercial use. Finally, the experimental results show that a commercial software framework for VR games can accelerate the development of experiments in the metaverse to connect users from different parts of the world in real time.Universidad Cooperativa de Colombia-Cali, Colombia INV278

    Brownfield Factory Layout Planning using Realistic Virtual Models

    Get PDF
    To stay competitive in an increasingly digitalised and global context, manufacturing companies need to increase productivity and decrease waste. This means their production systems must improve; something they can achieve in a multitude of ways. For example, increasing the level of automation, improving scheduling and improving product and process flows. Often, these production system improvements entail redesigning the system to incorporate these ensuing changes; a unique and temporary endeavour that is often structured as a project. One part of the production system design process is layout planning, in which the positions of operators, workstations, machines and other parts of the system are decided. This planning process can have a major impact on the overall efficiency of operations.In industrial settings, factory layout planning is often conducted in brownfield settings. In other words, in operational facilities. Since every production system and facility is unique, so is every factory layout planning project. Each such project has different preconditions, existing knowledge, availability and quality of data, lead-times, expectations and driving forces, to name just a few. If factory layout planning were treated as a design problem (more subjective than mathematical in nature), it would be hard to produce a mathematical solution for an optimal layout that would also work in reality. Instead, if a layout is developed and adapted to all real constraints and factors while it is being developed, the result would more likely be installable and work as expected.The long-term vision of this thesis is of a future in which sustainable manufacturing industry continues playing a vital role in society, because its contribution is more than just economic. A future in which the manufacturing industry is appreciated and engaged with by the local community; in which high performance is connected to the successful adoption and efficient use of digital tools in developing and improving existing brownfield production systems. This thesis aims to ensure that manufacturing industry adopts realistic virtual models in its brownfield factory layout planning processes. It does this by identifying and describing common challenges and how they may be reduced by developing and using realistic virtual models. This leads to improvements in the planning, installation and operational phases of production systems.The findings of this thesis show that brownfield factory layout planning represents a significant proportion of industrial layout planning. Its challenges lie mainly in the areas of data accuracy and richness. There are difficulties in grasping scale and perspective, communicating ideas and gathering input in the layout planning phase. By applying 3D laser scanning to provide accurate data and virtual reality to provide immersion and scale, realistic virtual models have been created. These reduce or eliminate the challenges stated above and allow more employees to be involved in the layout planning process. This, in turn, results in the identification of flaws in the layout and improvements in the early stages, rather than during or after installation. There is also an overall improvement to brownfield factory change processes, with costs that pale by comparison to the total cost of layout changes

    Virtual Factory:a systemic approach to building smart factories

    Get PDF

    Natural Virtual Reality User Interface to Define Assembly Sequences for Digital Human Models

    Get PDF
    Digital human models (DHMs) are virtual representations of human beings. They are used to conduct, among other things, ergonomic assessments in factory layout planning. DHM software tools are challenging in their use and thus require a high amount of training for engineers. In this paper, we present a virtual reality (VR) application that enables engineers to work with DHMs easily. Since VR systems with head-mounted displays (HMDs) are less expensive than CAVE systems, HMDs can be integrated more extensively into the product development process. Our application provides a reality-based interface and allows users to conduct an assembly task in VR and thus to manipulate the virtual scene with their real hands. These manipulations are used as input for the DHM to simulate, on that basis, human ergonomics. Therefore, we introduce a software and hardware architecture, the VATS (virtual action tracking system). This paper furthermore presents the results of a user study in which the VATS was compared to the existing WIMP (Windows, Icons, Menus and Pointer) interface. The results show that the VATS system enables users to conduct tasks in a significantly faster way

    Increasing Eco-Efficiency Awareness for Ship Loading Process Using Virtual Reality and Gamification

    Get PDF
    The world is striving for a sustainable future as United Nations proposed the 17 Sustainable Development Goals to reduce the environmental impact and increase societal wellbeing by 2030. In this endeavor, eco-efficiency is considered as one of the key concept to facilitate the successful transition to the sustainable development with the focus to reduce the ecological impact of industry through efficiency improvements. The shipping industry is largely involved in this challenge with a target set by International Maritime Organization to cut emissions from individual ships by 40% from 2008 levels by 2030. The ship loading process is believed to have great impact to the overall eco-efficiency as it is not only a time consuming process but also determines the fuel consumption of the transportation. In this study, we aim to incorporate virtual reality (VR) technology and gamification theories to raise the eco-efficiency awareness in the shipping loading process. A VR application for ship loading process was developed using a real world case in the Baltic sea region. Eco-efficiency concept is introduced in different levels based on the gamification theories. Maritime professionals tested the VR application and provided their feedback. The results are positive that combining VR and gamification can be useful to train operators with eco-efficiency in ship loading operations. It also shows a huge potential to support the shipping industry in this transition towards a more sustainable future. A VR application for ship loading process was developed using a real world case in the Baltic sea region. Eco-efficiency concept is introduced in different levels based on the gamification theories. Maritime professionals tested the VR application and provided their feedback. The results are positive that combining VR and gamification can be useful to train operators with eco-efficiency in ship loading operations. It also shows a huge potential to support the shipping industry in this transition towards a more sustainable future. A VR application for ship loading process was developed using a real world case in the Baltic sea region. Eco-efficiency concept is introduced in different levels based on the gamification theories. Maritime professionals tested the VR application and provided their feedback. The results are positive that combining VR and gamification can be useful to train operators with eco-efficiency in ship loading operations. It also shows a huge potential to support the shipping industry in this transition towards a more sustainable future. The results are positive that combining VR and gamification can be useful to train operators with eco-efficiency in ship loading operations. It also shows a huge potential to support the shipping industry in this transition towards a more sustainable future. The results are positive that combining VR and gamification can be useful to train operators with eco-efficiency in ship loading operations. It also shows a huge potential to support the shipping industry in this transition towards a more sustainable future
    • …
    corecore