45 research outputs found

    Internal hernia following laparoscopic gastric bypass

    No full text
    Obesity is increasingly recognised as a major health threat in the developed world, with more than 120 million people worldwide classified as clinically obese. Increased weight causes increased morbidity and mortality due to its association with cardiovascular disease, diabetes and certain cancers. Bariatric surgery is currently the most efficacious treatment for morbid obesity and has the best long-term outcomes. Bariatric surgery is not without risks. Some of the early risks include postoperative bleeding, anastomotic leaks, and venous thromboembolism. Late complications include marginal ulcer formation, nutritional deficiencies and small bowel obstruction. The latter may be caused by internal hernia formation. In this thesis, an analysis of the causes of small bowel obstruction after laparoscopic Roux-en-Y gastric bypass (LRYGB) is presented, looking specifically at internal hernia formation. A detailed account of the presentation and radiological findings of internal hernia following laparoscopic gastric bypass is provided. The impact of altering surgical technique on the occurrence of internal hernia is analysed: an Observational Clinical Human Reliability Assessment (OCHRA) tool was used for root cause analysis of internal hernia following gastric bypass and in the final study, the employment of a new technique demonstrated significant reduction in the incidence of internal hernia.Open Acces

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    On-pump vascular reperfusion of Thiel embalmed cadavers

    Get PDF

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    The Role of Visualization, Force Feedback, and Augmented Reality in Minimally Invasive Heart Valve Repair

    Get PDF
    New cardiovascular techniques have been developed to address the unique requirements of high risk, elderly, surgical patients with heart valve disease by avoiding both sternotomy and cardiopulmonary bypass. However, these technologies pose new challenges in visualization, force application, and intracardiac navigation. Force feedback and augmented reality (AR) can be applied to minimally invasive mitral valve repair and transcatheter aortic valve implantation (TAVI) techniques to potentially surmount these challenges. Our study demonstrated shorter operative times with three dimensional (3D) visualization compared to two dimensional (2D) visualization; however, both experts and novices applied significantly more force to cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery. Subsequently, using an innovative robotics-assisted surgical system design, we determined that direct haptic feedback may improve both expert and trainee performance using robotics-assisted techniques. We determined that during robotics-assisted mitral valve annuloplasty the use of either visual or direct force feedback resulted in a significant decrease in forces applied to cardiac tissue when compared to robotics-assisted mitral valve annuloplasty without force feedback. We presented NeoNav, an AR-enhanced echocardiograpy intracardiac guidance system for NeoChord off-pump mitral valve repair. Our study demonstrated superior tool navigation accuracy, significantly shorter navigation times, and reduced potential for injury with AR enhanced intracardiac navigation for off-pump transapical mitral valve repair with neochordae implantation. In addition, we applied the NeoNav system as a safe and inexpensive alternative imaging modality for TAVI guidance. We found that our proposed AR guidance system may achieve similar or better results than the current standard of care, contrast enhanced fluoroscopy, while eliminating the use of nephrotoxic contrast and ionizing radiation. These results suggest that the addition of both force feedback and augmented reality image guidance can improve both surgical performance and safety during minimally invasive robotics assisted and beating heart valve surgery, respectively

    Conception et évaluation d’un simulateur à réalité virtuelle d’intervention laparoscopique actionné par des embrayages magnétorhéologiques

    Get PDF
    La laparoscopie est une technique chirurgicale qui offre une alternative moins invasive à la chirurgie abdominale traditionnelle, en permettant aux patients de récupérer plus rapidement et avec moins de douleur. Dès son arrivée, cette nouvelle technique a su révolutionner le monde de la chirurgie, mais cette révolution est d'ailleurs venue avec un cout, une formation longue et difficile. Des simulateurs haptiques ont tenté de rendre cet apprentissage plus facile, mais leur cout élevé et leurs grosses dimensions les rendent difficiles d'accès pour les étudiants moyens. Afin de résoudre ce problème, des concepts qui utilisent des dispositifs haptiques sont offerts sur le marché pour concevoir des plateformes de simulation d'interventions laparoscopiques. Ces plateformes sont toutefois peu fidèles à la réalité et n'atteignent pas simultanément les performances dynamiques et cinétiques nécessaires à un apprentissage adéquat. En effet, les moteurs électriques utilisés obligent les concepteurs de dispositifs haptiques à faire un compromis entre la force produite et la réponse dynamique du système. Cette approche pourrait par contre être utilisée avec un dispositif haptique nouvelle-génération, le T-Rex. Ce dernier a été développé récemment par Exonetik, une compagnie issue de recherches de l'Université de Sherbrooke. Contrairement aux dispositifs haptiques offerts sur le marché, le T-Rex utilise la technologie d'actionneurs magnéto-rhéologiques développée par Exonetik. Cette technologie pourrait permettre d'atteindre les performances dynamiques et cinétiques nécessaires à la formation de chirurgiens. Ce projet de recherche présente l'analyse préliminaire du T-Rex d'Exonetik en tant que simulateur à réalité virtuelle d'interventions laparoscopiques. Un simulateur à réalité virtuelle d'interventions laparoscopiques utilisant le T-Rex d'Exonetik en tant qu'interface haptique a été conçu. Des critères de performances ont été établis à l'aide de la littérature pour faire une évaluation quantitative du système. Des simulations utilisant la méthode des éléments finis ont aussi été développées pour faire une évaluation qualitative du système auprès de résidents et de chirurgiens. L'évaluation quantitative du système démontre qu'il répond aux quatre critères cinématiques ainsi qu'à trois des quatre critères cinétiques. Les résultats démontrent donc que l'utilisation d'actionneurs magnéto-rhéologiques dans les simulateurs à réalité virtuelle d'interventions laparoscopiques a beaucoup de potentiel. Par contre, la friction dans le système se doit d'être adressée dans les itérations futures du système

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Endoluminal weight loss and metabolic therapies: current and future techniques

    Get PDF
    Background The majority of obese patients remain untreated, creating the need for an effective, well-tolerated, safe and appealing therapeutic approach. Endoluminal therapies have the potential to fulfil this unmet clinical need, though traditionally, these approaches mimic the restrictive elements of bariatric surgery but ignore the complex physiologic and neurohormonal mechanisms responsible for bariatric surgeries’ weight-independent reduction in metabolic comorbidities. Hypothesis The overarching hypothesis of this thesis was that although endoluminal gastric space occupying and restrictive interventions result in weight loss, weight-independent improvements in obesity related comorbidities require eradication of the gastric mucosa. Aims The aims of this thesis were to assess the efficacy and safety of the intragastric balloon (IGB) and endoscopic sleeve gastroplasty (ESG), and to evaluate whether gastric mucosal devitalization (GMD) is a potential therapeutic approach to treat patients with obesity. Methods Gastric space occupation and gastric volume reduction were modelled using IGB and ESG, respectively. To evaluate the effects of GMD (without alteration in gastric volume), high fat diet rats were compared to GMD, laparoscopic sleeve gastrectomy (LSG), and sham rats. To determine the translatability of GMD, the feasibility, efficacy and safety of GMD was compared to LSG and sham in a porcine model. Results The clinical research demonstrated that IGBs and ESG result in clinically meaningful weight loss with an acceptable safety profile. However, neither produced improvements in metabolic parameters that were disproportionate to the weight loss observed. GMD resulted in a reduction in body weight and visceral adiposity, improved serum lipid and glucose profiles, and reduced liver lipid content. GMD also resulted in a significant reduction in blood pressure, plasma renin activity and cardiac as well as aortic lipid droplet deposition. In a porcine model, GMD reduced visceral adiposity, with outcomes greater than what would be expected from weight loss alone. Conclusions Weight-independent metabolic improvements can be achieved by selecting the gastric mucosa as a therapeutic target; therefore, endoscopic GMD is a new potential approach for the management of obesity

    Recent Advances in Laparoscopic Surgery

    Get PDF
    The implementation of laparoscopy has revolutionized surgery over the past few years, incorporating significant benefits for the patient. However, this evolution has also entailed many technical obstacles for surgeons. This book is for readers wanting to learn more about recent surgical techniques and technologies. Topics cover novel sophisticated approaches for single-site surgery, natural orifice transluminal endoscopic surgery, and transanal surgery, among others. Also included are reviews of new innovative surgical devices, robotic platforms, and methodological guidelines for improving surgical performance and surgeon ergonomics
    corecore