55,574 research outputs found

    Can intelligence explode?

    Get PDF
    The technological singularity refers to a hypothetical scenario in which technological advances virtually explode. The most popular scenario is the creation of super-intelligent algorithms that recursively create ever higher intelligences. It took many decades for these ideas to spread from science fiction to popular science magazines and finally to attract the attention of serious philosophers. David Chalmers' (JCS, 2010) article is the first comprehensive philosophical analysis of the singularity in a respected philosophy journal. The motivation of my article is to augment Chalmers' and to discuss some issues not addressed by him, in particular what it could mean for intelligence to explode. In this course, I will (have to) provide a more careful treatment of what intelligence actually is, separate speed from intelligence explosion, compare what super-intelligent participants and classical human observers might experience and do, discuss immediate implications for the diversity and value of life, consider possible bounds on intelligence, and contemplate intelligences right at the singularity

    Packet Transactions: High-level Programming for Line-Rate Switches

    Full text link
    Many algorithms for congestion control, scheduling, network measurement, active queue management, security, and load balancing require custom processing of packets as they traverse the data plane of a network switch. To run at line rate, these data-plane algorithms must be in hardware. With today's switch hardware, algorithms cannot be changed, nor new algorithms installed, after a switch has been built. This paper shows how to program data-plane algorithms in a high-level language and compile those programs into low-level microcode that can run on emerging programmable line-rate switching chipsets. The key challenge is that these algorithms create and modify algorithmic state. The key idea to achieve line-rate programmability for stateful algorithms is the notion of a packet transaction : a sequential code block that is atomic and isolated from other such code blocks. We have developed this idea in Domino, a C-like imperative language to express data-plane algorithms. We show with many examples that Domino provides a convenient and natural way to express sophisticated data-plane algorithms, and show that these algorithms can be run at line rate with modest estimated die-area overhead.Comment: 16 page

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Cost-effective HPC clustering for computer vision applications

    Get PDF
    We will present a cost-effective and flexible realization of high performance computing (HPC) clustering and its potential in solving computationally intensive problems in computer vision. The featured software foundation to support the parallel programming is the GNU parallel Knoppix package with message passing interface (MPI) based Octave, Python and C interface capabilities. The implementation is especially of interest in applications where the main objective is to reuse the existing hardware infrastructure and to maintain the overall budget cost. We will present the benchmark results and compare and contrast the performances of Octave and MATLAB

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    MYRIAD: A new N-body code for simulations of Star Clusters

    Full text link
    We present a new C++ code for collisional N-body simulations of star clusters. The code uses the Hermite fourth-order scheme with block time steps, for advancing the particles in time, while the forces and neighboring particles are computed using the GRAPE-6 board. Special treatment is used for close encounters, binary and multiple sub-systems that either form dynamically or exist in the initial configuration. The structure of the code is modular and allows the appropriate treatment of more physical phenomena, such as stellar and binary evolution, stellar collisions and evolution of close black-hole binaries. Moreover, it can be easily modified so that the part of the code that uses GRAPE-6, could be replaced by another module that uses other accelerating-hardware like the Graphics Processing Units (GPUs). Appropriate choice of the free parameters give a good accuracy and speed for simulations of star clusters up to and beyond core collapse. Simulations of Plummer models consisting of equal-mass stars reached core collapse at t~17 half-mass relaxation times, which compares very well with existing results, while the cumulative relative error in the energy remained below 0.001. Also, comparisons with published results of other codes for the time of core collapse for different initial conditions, show excellent agreement. Simulations of King models with an initial mass-function, similar to those found in the literature, reached core collapse at t~0.17, which is slightly smaller than the expected result from previous works. Finally, the code accuracy becomes comparable and even better than the accuracy of existing codes, when a number of close binary systems is dynamically created in a simulation. This is due to the high accuracy of the method that is used for close binary and multiple sub-systems.Comment: 24 pages, 29 figures, accepted for publication to Astronomy & Astrophysic
    corecore