673 research outputs found

    The philosophy and practice of Taktfahrplan: a case-study of the East Coast Main Line.

    Get PDF
    Executive Summary This Working Paper has three purposes, represented by three Parts: - to explain the principles of the Taktfahrplan approach to railway timetabling; - to summarise the implications of the background research on the structure of the network; and - to describe the exercise of constructing a Taktfahrplan for the East Coast Main Line that formed the case-study of the potential benefits of such a scheme compared with the existing timetable. In Part I the broad principles and objectives are first outlined, and the advantages and disadvantages discussed [§ 1.1,1.2]. A Taktfahrplan is based on standard hours and the careful, network-wide coordination of sewices. It is recognised that ultimately the choice between this and conventional timetabling methods must depend on an evaluation of the loss of present flexibility to adjust to time-specific market demands against the gains from enhanced connectivity and from the fact of regularity. Issues concerning resources and the management of peak periods are also explained. Terminology is then dealt with because words and phrases are being used with imprecise and various meanings [§1.3]. There follows a detailed account of the arithmetic rules through which the ideal relationships between train (and bus) sewices can be attained, together with an explanation of the measures that can be taken to make the best compromises in the face of the characteristics of the real network - or to adjust it over time [§ 1.4]. In Part 2 the research to highlight features of the underlying demand for travel is described. This is not a necessary component of strategic timetable planning, but it is argued that it is desirable in order both to break free from the historical baggage and to seize the business, environmental and social-policy opportunities that a 'clean- sheet' timetable would present [§2.1]. The provisional findings from this work (it was left incomplete for reasons that are explained) are then deployed to form the skeleton of a national network connecting 100 important centres with 158 links. This is followed by an analysis of the very variable standards of the rail timetable on those links and of the road competition and by an account of some first thoughts as to how a full-scale Taktfahrplan might start to be developed on this network [§2.2]. This emphasises the inter-relationships between sewices and the inescapable consequences for pathing trains, once it is accepted that sensible spacing of services and striving for good connectivity are more important than optimising routes on a self-contained basis. It was thought appropriate to include a summary of the findings regarding the low-density end of the current rail system in order to indicate the issues that Taktfahrplan might raise in this respect [§2.3]. The East Coast case-study is presented in Part 3. Some technical matters are explained first, including the key point that the exercise used the Viriato timetabling software employed by the Swiss Federal Railways (and many other systems) to construct Taktfahrpliine [§3.1]. Successive sub-parts then describe groups of services: long-distance [§3.2], services within Scotland [§3.3], services in North East England [§3.4], the trans-Pennine network [§3.5] and some of the Yorkshire services [§3.6]

    Impacts of revenue management on Japan's domestic market

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. 161-163).by Takeshi Eguchi.S.M

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research

    Incorporating Long-Distance Travel intoTransportation Planning in the United States

    Get PDF
    In the early years of transportation planning and highway infrastructure development in the United States the focus was on intercity or long-distance travel, a contrast to the metropolitan travel and state-based models that dominate today. Daily home and work-based travel, which have been the focus of data collection and models since the 1950s, are well-modeled by regional agencies and a limited number of state travel demand models even include some long-distance travel. Nonetheless, long-distance travel demand and factors affecting behavior are not thoroughly considered in transportation planning or behavior research. Only one recent activity-based model of national travel demand has been created and its scope was limited by a severe lack of data. The conceptualization of models to consider intercity long-distance travel has changed little since its inception in the 1970s and 1980s. In order to comprehensively consider transportation system sustainability, there is a critical need for improved nation-wide annual overnight activity data and models of overnight travel (a re-focus and important distinct re-framing of long-distance trips that this white paper suggests). Truly addressing the economic, environmental, and social equity issues required to create a sustainable global transportation system will entail completely updating our existing planning framework to meaningfully include long-distance travel. It is clear that long-distance passenger miles must be accounted for when addressing greenhouse gas (GHG) emissions and other negative environmental externalities. Less well-known are the questions of social justice that loom large when one considers the details of long-distance travel. Travel in our society is becoming increasingly associated with quality of life. Those without intercity access may miss opportunity and social capital. However, without representative long-distance travel data it is impossible to compare the relative participation by different groups and to consider latent demand. It is difficult to measure who comprises the global mobile elite and who lacks sufficient intercity mobility for reasonable social network obligations and personal services. This white paper suggests utilizing a common framework for long-distance data collection and tabulation that re-defines long-distance travel into daily or overnight. The author advocates using overnight as the defining characteristic for data collection, which complements existing daily travel surveys already capturing long day-trips. Within frameworks moving forward it is important to clearly characterize all trip purposes, including mixed purposes and purposeless travel, which comprise an appreciable portion of long-distance travel. Spatial data that distinguish between simple out-and-back trips and spatially complex trips are necessary and mobile devices have now made this measurement of long-distance tours feasible. In order to truly model all travel in the current system, we must move away from the idea that most travel is routine, within region, and home-based. Many people, especially the most frequent travelers, have long-distance routines including multiple home bases. Additionally, our models should not assume that travelers staying at a second home, hotel, or friend’s home travel like residents. Efforts to measure and model non-home-based travel or travel at destination are essential to accurately modeling behavior. Daily surveys such as the 2017 National Household Transportation Survey are increasingly doing this. A nation-wide annual activity model of overnight travel must fully incorporate both surface and air travel to allow full consideration of alternative future system scenarios
    • 

    corecore