48,348 research outputs found

    AILiveSim : An Extensible Virtual Environment for Training Autonomous Vehicles

    Get PDF
    Virtualization technologies have become common- place both in software development as well as engineering in a more general sense. Using virtualization offers other benefits than simulation and testing as a virtual environment can often be more liberally configured than the corresponding physical envi- ronment. This, in turn, introduces new possibilities for education and training, including both for humans and artificial intelligence (AI). To this end, we are developing a simulation platform AILiveSim. The platform is built on top of the Unreal Engine game development system, and it is dedicated to training and testing autonomous systems, their sensors and their algorithms in a simulated environment. In this paper, we describe the elements that we have built on top of the engine to realize a Virtual Environment (VE) useful for the design, implementation, application and analysis of autonomous systems. We present the architecture that we have put in place to transform our simulation platform from automotive specific to be domain agnostic and support two new domains of applications: autonomous ships and autonomous mining machines. We describe the important specificity of each domain in regard to simulation. In addition, we also report the challenges encountered when simulating those applications, and the decisions taken to overcome these challenges.Peer reviewe

    A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning

    Full text link
    For safe and efficient planning and control in autonomous driving, we need a driving policy which can achieve desirable driving quality in long-term horizon with guaranteed safety and feasibility. Optimization-based approaches, such as Model Predictive Control (MPC), can provide such optimal policies, but their computational complexity is generally unacceptable for real-time implementation. To address this problem, we propose a fast integrated planning and control framework that combines learning- and optimization-based approaches in a two-layer hierarchical structure. The first layer, defined as the "policy layer", is established by a neural network which learns the long-term optimal driving policy generated by MPC. The second layer, called the "execution layer", is a short-term optimization-based controller that tracks the reference trajecotries given by the "policy layer" with guaranteed short-term safety and feasibility. Moreover, with efficient and highly-representative features, a small-size neural network is sufficient in the "policy layer" to handle many complicated driving scenarios. This renders online imitation learning with Dataset Aggregation (DAgger) so that the performance of the "policy layer" can be improved rapidly and continuously online. Several exampled driving scenarios are demonstrated to verify the effectiveness and efficiency of the proposed framework

    A LiDAR Point Cloud Generator: from a Virtual World to Autonomous Driving

    Full text link
    3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate point-level labels from a computer game. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic calibration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed

    Virtual to Real Reinforcement Learning for Autonomous Driving

    Full text link
    Reinforcement learning is considered as a promising direction for driving policy learning. However, training autonomous driving vehicle with reinforcement learning in real environment involves non-affordable trial-and-error. It is more desirable to first train in a virtual environment and then transfer to the real environment. In this paper, we propose a novel realistic translation network to make model trained in virtual environment be workable in real world. The proposed network can convert non-realistic virtual image input into a realistic one with similar scene structure. Given realistic frames as input, driving policy trained by reinforcement learning can nicely adapt to real world driving. Experiments show that our proposed virtual to real (VR) reinforcement learning (RL) works pretty well. To our knowledge, this is the first successful case of driving policy trained by reinforcement learning that can adapt to real world driving data
    • …
    corecore