119,640 research outputs found

    C-Sheep: Controlling Entities in a 3D Virtual World as a Tool for Computer Science Education

    Get PDF
    One of the challenges in teaching computer science in general and computer programming in particular is to maintain the interest of students, who often perceive the subject as difficult and tedious. To this end, we introduce C-Sheep, a mini-language-like system for computer science education, using a state of the art rendering engine, usually found in entertainment systems. The intention is to motivate students to spend more time programming, which can be achieved by providing an enjoyable experience. Computer programming is an essential skill for software developers and as such is always an integral part of every computer science curriculum. However, even if students are pursuing a computer science related degree, it can be very difficult to interest them in the act of computer programming, the writing of software, itself. In the C-Sheep system this is addressed by using the visual gimmickry of modern computer games, which allows programs to provide instant visualisation of algorithms. This visual feedback is invaluable to the understanding of how the algorithm works, and - if there are unintended results - how errors in the program can be debugged. The C-Sheep programming language is a (100% compatible) subset of the ANSI C programming language. Apart from just being a tool for learning the basics of the C programming language, C-Sheep implements the C control structures that are required for teaching the basic computer science principles encountered in structured programming. Unlike other teaching languages which have minimal syntax and which are variable free to provide an environment with minimal complexity, C-Sheep allows the declaration and use of variables. C-Sheep also supports the definition of sub-routines (functions) which can be called recursively. "The Meadow" virtual environment is the virtual world in which entities (in our case sheep) controlled by C-Sheep programs exist. This micro world provides a graphical representation of the algorithms used in the programs controlling the virtual entities. Their position and orientation within the virtual world visualise the current state of the program. "The Meadow" is based on our proprietary "Crossbow" game engine which incorporates a virtual machine for executing CSheep programs. The Crossbow Engine is a compact game engine which is flexible in design and offers a number of features common to more complex engines. The Crossbow Virtual Machine used with C-Sheep in "The Meadow" - an improvement on the ZBL/0 virtual machine - is a module of the Crossbow Engine. The C-Sheep system also provides a counterpart library for C, mirroring the CSheep library functions of the virtual machine. This allows C-Sheep programs to be compiled into an executable using a normal off-the-shelf C/C++ compiler. This executable can then be run from within the native working environment of the operating system. The purpose of this library is to simplify the migration from the educational mini-language to real-world systems by allowing novice programmers to make an easy transition from using the C-Sheep system to using the C programming language

    Do Robots Dream of Virtual Sheep: Rediscovering the "Karel the Robot" Paradigm for the "Plug&Play Generation"

    Get PDF
    We introduce ”C-Sheep”, an educational system designed to teach students the fundamentals of computer programming in a novel and exciting way. Recent studies suggest that computer science education is fast approaching a crisis - application numbers for degree courses in the area of computer programming are down, and potential candidates are put off the subject which they do not fully understand. We address this problem with our system by providing the visually rich virtual environment of ”The Meadow”, where the user writes programs to control the behaviour of a sheep using our ”CSheep” programming language. This combination of the ”Karel the Robot” paradigm with modern 3D computer graphics techniques, more commonly found in computer games, aims to help students to realise that computer programming can be an enjoyable and rewarding experience and intends to help educators with the teaching of computer science fundamentals. Our mini-language-like system for computer science education uses a state of the art rendering engine offering features more commonly found in entertainment systems. The scope of the mini-language is designed to fit in with the curriculum for the first term of an introductory computer program ming course (using the C programming language)

    Critters in the Classroom: A 3D Computer-Game-Like Tool for Teaching Programming to Computer Animation Students

    Get PDF
    The brewing crisis threatening computer science education is a well documented fact. To counter this and to increase enrolment and retention in computer science related degrees, it has been suggested to make programming "more fun" and to offer "multidisciplinary and cross-disciplinary programs" [Carter 2006]. The Computer Visualisation and Animation undergraduate degree at the National Centre for Computer Animation (Bournemouth University) is such a programme. Computer programming forms an integral part of the curriculum of this technical arts degree, and as educators we constantly face the challenge of having to encourage our students to engage with the subject. We intend to address this with our C-Sheep system, a reimagination of the "Karel the Robot" teaching tool [Pattis 1981], using modern 3D computer game graphics that today's students are familiar with. This provides a game-like setting for writing computer programs, using a task-specific set of instructions which allow users to take control of virtual entities acting within a micro world, effectively providing a graphical representation of the algorithms used. Whereas two decades ago, students would be intrigued by a 2D top-down representation of the micro world, the lack of the visual gimmickry found in modern computer games for representing the virtual world now makes it extremely difficult to maintain the interest of students from today's "Plug&Play generation". It is therefore especially important to aim for a 3D game-like representation which is "attractive and highly motivating to today's generation of media-conscious students" [Moskal et al. 2004]. Our system uses a modern, platform independent games engine, capable of presenting a visually rich virtual environment using a state of the art rendering engine of a type usually found in entertainment systems. Our aim is to entice students to spend more time programming, by providing them with an enjoyable experience. This paper provides a discussion of the 3D computer game technology employed in our system and presents examples of how this can be exploited to provide engaging exercises to create a rewarding learning experience for our students

    Toward a Semiotic Framework for Using Technology in Mathematics Education: The Case of Learning 3D Geometry

    Get PDF
    This paper proposes and examines a semiotic framework to inform the use of technology in mathematics education. Semiotics asserts that all cognition is irreducibly triadic, of the nature of a sign, fallible, and thoroughly immersed in a continuing process of interpretation (Halton, 1992). Mathematical meaning-making or meaningful knowledge construction is a continuing process of interpretation within multiple semiotic resources including typological, topological, and social-actional resources. Based on this semiotic framework, an application named VRMath has been developed to facilitate the learning of 3D geometry. VRMath utilises innovative virtual reality (VR) technology and integrates many semiotic resources to form a virtual reality learning environment (VRLE) as well as a mathematical microworld (Edwards, 1995) for learning 3D geometry. The semiotic framework and VRMath are both now being evaluated and will be re-examined continuously

    A NPC Behaviour Definition System for Use by Programmers and Designers

    Get PDF
    In this paper we describe ZBL/0, a scripting system for defining NPC (Non Player Character) behaviour in FPS (First Person Shooter) games. ZBL/0 has been used to illustrate the use of scripting systems in computer games in general and the scripting of NPC behaviour in particular in the context of a book on game development. Many novice game designers have clear ideas about how the computer game they imagine should work but have little knowledge – if any – about how their ideas can be implemented. This is why books on game creation (design, programming etc.), as well as all-in-one game creation systems – especially designed for ease of use and intended for an amateur audience – enjoy great popularity. A large proportion of these books however merely present solutions in the form of descriptions and explanations of specific implementations with inadequate explanations of principles. While this may benefit rapid application development it often does not lead to a deeper understanding of the underlying concepts. The understanding of rule-based behaviour definition through simple scripting in computer games and the development of such scripts by programmers and designers is what we aim to address with the ZBL/0 system

    Bricklayer: An Authentic Introduction to the Functional Programming Language SML

    Full text link
    Functional programming languages are seen by many as instrumental to effectively utilizing the computational power of multi-core platforms. As a result, there is growing interest to introduce functional programming and functional thinking as early as possible within the computer science curriculum. Bricklayer is an API, written in SML, that provides a set of abstractions for creating LEGO artifacts which can be viewed using LEGO Digital Designer. The goal of Bricklayer is to create a problem space (i.e., a set of LEGO artifacts) that is accessible and engaging to programmers (especially novice programmers) while providing an authentic introduction to the functional programming language SML.Comment: In Proceedings TFPIE 2014, arXiv:1412.473

    A Classification of Scripting Systems for Entertainment and Serious Computer Games

    Get PDF
    The technology base for modern computer games is usually provided by a game engine. Many game engines have built-in dedicated scripting languages that allow the development of complete games that are built using those engines, as well as extensive modification of existing games through scripting alone. While some of these game engines implement proprietary languages, others use existing scripting systems that have been modified according to the game engine's requirements. Scripting languages generally provide a very high level of abstraction method for syntactically controlling the behaviour of their host applications and different types of scripting system allow different types of modification of their underlying host application. In this paper we propose a simple classification for scripting systems used in computer games for entertainment and serious purposes

    Knowledge Construction of 3D Geometry Concepts and Processes Within a Virtual Reality Learning Environment

    Get PDF
    A consensus has emerged within the mathematics education community about the limitations of traditional approaches for teaching and learning 3D geometry. Therefore, it has been suggested that new approaches based on the use of computers need to be adopted. One such new approach that has been proposed utilises Virtual Reality Learning Environment (VRLE). This paper reports on the initial phases of a research study whose major aim is to design and evaluate a VRLE to facilitate the construction of knowledge about 3D geometry concepts and processes. This research study investigates two primary school students’ construction of 3D geometry knowledge whilst engaged within a VRLE developed by the researcher. A design experiments research methodology was employed in this study. This is research that iterates through cycles of design and research with the objective of arriving at theoretical and design principles that will have application both within and beyond the immediate research study. Therefore, the results being reported in this paper will be used to inform the modification not only of the VRLE but also of theoretical frameworks underlying the design and implementation of VRLEs
    corecore