830 research outputs found

    Engineering Method and Tool for the Complete Virtual Commissioning of Robotic Cells

    Get PDF
    Intelligent robotic manufacturing cells must adapt to ever-varying operating conditions, developing autonomously optimal manufacturing strategies to achieve the best quality and overall productivity. Intelligent and cognitive behaviors are realized by using distributed controllers, in which complex control logics must interact and process a wide variety of input/output signals. In particular, programmable logic controllers (PLCs) and robot controllers must be coordinated and integrated. Then, there is the need to simulate the robotic cells’ behavior for performance verification and optimization by evaluating the effects of both PLC and robot control codes. In this context, this work proposes a method, and its implementation into an integrated tool, to exploit the potential of ABB RobotStudio software as a virtual prototyping platform for robotic cells, in which real robots control codes are executed on a virtual controller and integrated with Beckhoff PLC environment. For this purpose, a PLC Smart Component was conceived as an extension of RobotStudio functionalities to exchange signals with a TwinCAT instance. The new module allows the virtual commissioning of a complete robotic cell to be performed, assessing the control logics effects on the overall productivity. The solution is demonstrated on a robotic assembly cell, showing its feasibility and effectiveness in optimizing the final performance

    Virtual Commissioning for Industrial Automation

    Get PDF
    A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree Master of Science by Saihiranmitra Mudiki on November 7, 2017

    Validating a reconfigurable assembly system utilizing virtual commissioning

    Get PDF
    Published ArticleSouth African manufacturing companies today need to be more sophisticated technologically to compete for global markets. The latest trend in automation and manufacturing emerges in the form of reconfigurable systems. The aim of this paper is to show the development of a reconfigurable assembly system and using virtual commissioning to plan, validate and optimize it. To achieve this "DELMIA" software was used to create a virtual simulation environment to verify an assembly cell from such a system as a case study. Simulations were conducted to verify software functions, device movements and operations, and the control software of the system. As a result, it was found that virtual commissioning is an excellent tool for predicting how the system will function, verifying system code early, and rectifying design flaws. This will enable manufacturing companies to be more competitive, ensure increased productivity, save time and ensure them an advantage over their competition

    A Virtual Commissioning Learning Platform

    Get PDF

    Interactive formal specification for efficient preparation of intelligent automation systems

    Get PDF
    The automation system of the future will consist of an increasing amount of complex resources, such as collaborative robots and/or autonomously roaming robots for material handling. To control these devices in an environment shared with human operators require state of the art computer perception and motion planning algorithms to be used as part of the automation system. This new type of intelligent automation system, where intelligent machines and learning algorithms are replacing more traditional automation solutions, requires new methods and workflows to keep up with the increase in complexity. This paper presents an interactive and iterative framework for solving some of these new challenges. The framework supports model-based control system preparation performed simultaneously to preparation of 3D geometries, positioning of robots, and tool design. The workflow enables an interactive preparation process, where new resources and constraints can be added to a live (real or simulated) automation system and control system failures can be analyzed in familiar tools for virtual preparation. Additionally, the paper describes how the integrated preparation process was applied to reconfiguring an industrial use case that includes a collaborative robot working side by side with a human operator, smart tools, and a vision system for localizing both work objects and tools

    Robotics Applications Based on Merged Physical and Virtual Reality

    Get PDF

    Multi-robot spot-welding cell design: Problem formalization and proposed architecture

    Get PDF
    The multi-robot cell design for car-body spot welding is faced by industry as a sequence of tasks, where researches are focused on issues of the problem as a whole. In authors’ knowledge, none work in literature have suggested any formalization for the complete process. This paper tries to bridges the gap proposing coherent process formalization, and presenting a corresponding innovative architecture for the automatic optimal cell design. Specifically, the formalization involves the identification and allocation of the resources in terms of a set of decisional variables (e.g. robot model/positioning/number, welding gun models/allocation/number, welding point allocation etc.); then, the design optimization process minimizes the investment costs granting the cycle time. The multi-loop optimization architecture integrates both new algorithms and existent procedures from different fields. Test-bed showing its feasibility is reported

    Engineering methods and tools for cyber–physical automation systems

    Get PDF
    Much has been published about potential benefits of the adoption of cyber–physical systems (CPSs) in manufacturing industry. However, less has been said about how such automation systems might be effectively configured and supported through their lifecycles and how application modeling, visualization, and reuse of such systems might be best achieved. It is vitally important to be able to incorporate support for engineering best practice while at the same time exploiting the potential that CPS has to offer in an automation systems setting. This paper considers the industrial context for the engineering of CPS. It reviews engineering approaches that have been proposed or adopted to date including Industry 4.0 and provides examples of engineering methods and tools that are currently available. The paper then focuses on the CPS engineering toolset being developed by the Automation Systems Group (ASG) in the Warwick Manufacturing Group (WMG), University of Warwick, Coventry, U.K. and explains via an industrial case study how such a component-based engineering toolset can support an integrated approach to the virtual and physical engineering of automation systems through their lifecycle via a method that enables multiple vendors' equipment to be effectively integrated and provides support for the specification, validation, and use of such systems across the supply chain, e.g., between end users and system integrators

    Towards quality-oriented architecture: Integration in a global context

    Get PDF
    This paper introduces an architectural framework for developing systems of systems, where the development plants are geographically distributed across different countries. The focus of our ongoing work is on architectural sustainability, in the sense of cost-effective longevity and endurance, and on quality assurance from the perspectives of integration in a global context. The core of our framework are different levels of abstraction, where state-of-the-art industrial development process is extended by the level of remote virtual system representation. Each abstraction level is associated with a different level of context-dependent architecture as well as the corresponding testing approaches

    De-manufacturing systems

    Get PDF
    open3noDe-Manufacturing Systems allow implementing optimized End-Of-Life strategies and are necessary to support a sustainable and competitive Manufacturing/De-Manufacturing integrated paradigm. However, available technologies, management methods and business models present several limitations that make landfill and, at a lower extent, materials recycling, the most diffused End-Of-Life practices. To overcome these limitations, this paper proposes an integrated multi-disciplinary research framework addressing single technologies improvement, system integration and business model coherency. The main challenges and research opportunities are presented that can boost the development of sustainable De-manufacturing Systems at industrial level.Colledani, Marcello; Copani, Giacomo; Tolio, TullioColledani, Marcello; Copani, Giacomo; Tolio, TULLIO ANTONIO MARI
    • …
    corecore