28,902 research outputs found

    Design Within Complex Environments: Collaborative Engineering in the Aerospace Industry

    Get PDF
    The design and the industrialization of an aircraft, a major component, or an aerostructure is a complex process. An aircraft like the Airbus A400M is composed of about 700,000 parts (excluding standard parts). The parts are assembled into aerostructures and major components, which are designed and manufactured in several countries all over the world. The introduction of new Product Lifecycle Management (PLM) methodologies, procedures and tools, and the need to reduce time-to-market, led Airbus Military to pursue new working methods to deal with complexity. Collaborative Engineering promotes teamwork to develop product, processes and resources from the conceptual phase to the start of the serial production. This paper introduces the main concepts of Collaborative Engineering as a new methodology, procedures and tools to design and develop an aircraft, as Airbus Military is implementing. To make a Proof of Concept (PoC), a pilot project, CALIPSOneo, was launched to support the functional and industrial design process of a medium size aerostructure. The aim is to implement the industrial Digital Mock-Up (iDMU) concept and its exploitation to create shop fl oor documentation

    Partnerships for skills : investing in training for the 21st century

    Get PDF

    Value Chain: From iDMU to Shopfloor Documentation of Aeronautical Assemblies

    Get PDF
    Competition in the aerospace manufacturing companies has led them to continuously improve the efficiency of their processes from the conceptual phase to the start of production and during operation phase, providing services to clients. PLM (Product Lifecycle Management) is an end-to-end business solution which aims to provide an environment of information about the product and related processes available to the whole enterprise throughout the product’s lifecycle. Airbus designs and industrializes aircrafts using Concurrent Engineering methods since decades. The introduction of new PLM methods, procedures and tools, and the need to improve processes efficiency and reduce time-to-market, led Airbus to pursue the Collaborative Engineering method. Processes efficiency is also impacted by the variety of systems existing within Airbus. Interoperability rises as a solution to eliminate inefficiencies due to information exchange and transformations and it also provides a way to discover and reuse existing information. The ARIADNE project (Value chain: from iDMU to shopfloor documentation of aeronautical assemblies) was launched to support the industrialization process of an aerostructure by implementing the industrial Digital Mock-Up (iDMU) concept in a Collaborative Engineering framework. Interoperability becomes an important research workpackage in ARIADNE to exploit and reuse the information contained in the iDMU and to create the shop floor documentation. This paper presents the context, the conceptual approach, the methodology adopted and preliminary results of the project

    Partnerships for skills : investing in training for the 21st century

    Get PDF

    Mapping customer needs to engineering characteristics: an aerospace perspective for conceptual design

    No full text
    Designing complex engineering systems, such as an aircraft or an aero-engine, is immensely challenging. Formal Systems Engineering (SE) practices are widely used in the aerospace industry throughout the overall design process to minimise the overall design effort, corrective re-work, and ultimately overall development and manufacturing costs. Incorporating the needs and requirements from customers and other stakeholders into the conceptual and early design process is vital for the success and viability of any development programme. This paper presents a formal methodology, the Value-Driven Design (VDD) methodology that has been developed for collaborative and iterative use in the Extended Enterprise (EE) within the aerospace industry, and that has been applied using the Concept Design Analysis (CODA) method to map captured Customer Needs (CNs) into Engineering Characteristics (ECs) and to model an overall ‘design merit’ metric to be used in design assessments, sensitivity analyses, and engineering design optimisation studies. Two different case studies with increasing complexity are presented to elucidate the application areas of the CODA method in the context of the VDD methodology for the EE within the aerospace secto
    • 

    corecore