5,001 research outputs found

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    A DevOps approach to integration of software components in an EU research project

    Get PDF
    We present a description of the development and deployment infrastructure being created to support the integration effort of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project intended to bring the power of heterogeneous resources to the cloud. It consists of a number of different services and technologies that interact with the OpenStack cloud computing platform at various levels. Many of these components are being developed independently by different teams at different locations across Europe, and keeping the work fully integrated is a challenge. We use a combination of Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide a consistent and up-to-date environment to each developer. The same playbooks used to configure local virtual machines are also used to manage a static testbed with heterogeneous compute and storage devices, and to automate ephemeral larger-scale deployments to Grid5000. Access to internal projects is managed by GitLab, and automated testing of services within Docker-based environments and integrated deployments within virtual-machines is provided by Buildbot

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    An approach for virtual appliance distribution for service deployment

    Get PDF
    Fulfilling a service request in highly dynamic service environments may require deploying a service. Therefore, the effectiveness of service deployment systems affects initial service response times. On Infrastructure as a Service (IaaS) cloud systems deployable services are encapsulated in virtual appliances. Services are deployed by instantiating virtual machines with their virtual appliances. The virtual machine instantiation process is highly dependent on the size and availability of the virtual appliance that is maintained by service developers. This article proposes an automated virtual appliance creation service that aids the service developers to create efficiently deployable virtual appliances in former systems this task was carried out manually by the developer. We present an algorithm that decomposes these appliances in order to replicate the common virtual appliance parts in IaaS systems. These parts are used to reduce the deployment time of the service by rebuilding the virtual appliance of the service on the deployment target site. With the prototype implementation of the proposed algorithms we demonstrate the decomposition and appliance rebuilding algorithms on a complex web service. © 2010 Elsevier Inc. All rights reserved

    Archer: A Community Distributed Computing Infrastructure for Computer Architecture Research and Education

    Full text link
    This paper introduces Archer, a community-based computing resource for computer architecture research and education. The Archer infrastructure integrates virtualization and batch scheduling middleware to deliver high-throughput computing resources aggregated from resources distributed across wide-area networks and owned by different participating entities in a seamless manner. The paper discusses the motivations leading to the design of Archer, describes its core middleware components, and presents an analysis of the functionality and performance of a prototype wide-area deployment running a representative computer architecture simulation workload.Comment: 11 pages, 2 figures. Describes the Archer project, http://archer-project.or

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    Container-based network function virtualization for software-defined networks

    Get PDF
    Today's enterprise networks almost ubiquitously deploy middlebox services to improve in-network security and performance. Although virtualization of middleboxes attracts a significant attention, studies show that such implementations are still proprietary and deployed in a static manner at the boundaries of organisations, hindering open innovation. In this paper, we present an open framework to create, deploy and manage virtual network functions (NF)s in OpenFlow-enabled networks. We exploit container-based NFs to achieve low performance overhead, fast deployment and high reusability missing from today's NFV deployments. Through an SDN northbound API, NFs can be instantiated, traffic can be steered through the desired policy chain and applications can raise notifications. We demonstrate the systems operation through the development of exemplar NFs from common Operating System utility binaries, and we show that container-based NFV improves function instantiation time by up to 68% over existing hypervisor-based alternatives, and scales to one hundred co-located NFs while incurring sub-millisecond latency

    Evaluation of virtual routing appliances as routers virtual environment

    Get PDF
    A virtual routing appliance is a system for the rapid, automated management and employment of virtual networks. Virtual routing appliances utilize virtual machines to enable virtual infrastructure, and they have been used commonly in order to implement experimental networks and devoted subnets over a virtual network. Existing research in this area such as cluster-based virtual routers, and Xen routers require the use of physical resources to establish connectivity and to guarantee efficient resource utilization. The virtual routing appliance uses dynamic routing protocols such as RIP, and OSPF to forward traffic between different subnets and manage IP packets at the IP layer. The virtual routing appliance permits rapidly deployable virtual infrastructure, which is helpful for installing isolated infrastructure for restricted purposes, and which is also vital to the deployment of both network and application services. This research is a self-sufficient initiative to evaluate the feasibility of setting up virtual routing appliances in a virtual environment. A virtual routing appliance can convey about substantial cost benefits to organizations, especially educational institutions with limited use of physical resources
    • …
    corecore