784 research outputs found

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    A concept for modern virtual telecommunication engineering office

    Get PDF
    High-performance modern Internet allows internal delivery and complement of attractive (mobile) services in the same way and QoS that are in the LANs. The world economics is widely characterized nowadays via the stable trends that the large and mid-range companies and authorities let in ever greater extent to outsource own engineering services via external smaller service providers. A concept for a modern virtual telecommunication engineering office under use of Service-Oriented Architectures and Cloud Computing technologies has been offered. Multiple use cases for virtual telecommunication engineering office have been discussed. As a significant example, the CANDY Framework and Online Platform have been examined. The important development trends for the CAD for network planning regarding to the tool integration and effective access optimization have been discussed. The CANDY system has been represented as an exhibit at CeBIT 2007,2008, 2011 in Hannover

    Multichannel Virtual Access Points for Seamless Handoffs in IEEE 802.11 Wireless Networks

    No full text
    Session: Handoff and Mobility Management 2International audienceWithin IEEE 802.11 Wireless Local Area Networks (WLANs), client stations can move freely, but because of the short range of their Access Points (APs), they usually need to reassociate with different APs to continue to communicate. When changing APs, a client station starts a process known as a handoff that can take up to 2 seconds, which is too long for real-time applications such as Voice over IP (VoIP). Various solutions have been proposed to change or improve the client behaviour when doing a handoff. Previously, we proposed the idea of Virtual Access Points (VAP) implemented on APs in which a client station changes APs without disrupting its current communication. Based on this new concept, we have developed a solution called Multichannel Virtual Access Points (mVAP) to take advantage of APs operating on multiple channels. We have implemented mVAP using PACMAP, a tool for packet manipulation, and evaluated its performance. Our results show that mVAP is a new efficient technique for seamless handoffs without performance degradation

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    corecore