542 research outputs found

    Adenovirus-mediated gene transfer to liver grafts: An improved method to maximize infectivity

    Get PDF
    Background. Adenoviral gene therapy in liver transplantation has many potential applications, but current vector delivery methods to grafts lack efficiency and require high titers. In this study, we attempted to improve gene delivery efficacy using three different delivery methods to liver grafts with adenoviral vector encoding the LacZ marker gene (AdLacZ). Methods. AdLacZ was delivered to cold preserved rat liver grafts by: (1) continuous perfusion via the portal vein (portal perfusion), (2) continuous perfusion via both the portal vein and hepatic artery (dual perfusion), and (3) trapping viral perfusate in the liver vasculature by clamping outflow (clamp technique). Results. Using 1x109 plaque-forming units of Ad-LacZ (multiplicity of infection of 0.4), transduction rate in 3-hr preserved liver grafts, determined by 5-bromo-4-chromo-3-indolyl-β-D-galactopyranoside staining and β-galactosidase assay 48 hr after transplantation, was best with clamp technique (21.5±2.7% 5-bromo-4-chromo-3-indolyl-β-D- galactopyranoside-positive cells and 81.1±3.6 U/g β-galactosidase), followed by dual perfusion (18.5±1.8%, 66.6±19.4 U/g) and portal perfusion (8.8±2.5%, 19.7±15.4 U/g). Further studies using clamp technique demonstrated a near-maximal gene transfer rate of 30% at multiplicity of infection of 0.4 with prolonged cold ischemia to 18 hr. Transgene expression was stable for 2 weeks and slowly declined to 7.8±12.1% at day 28. Lack of inflammatory response was confirmed by histopathological examination and liver enzymes. Transduction was selectively induced in hepatocytes with nearly no extrahepatic transgene expression in the lung and spleen. Conclusions. The clamp technique provides a highly efficient viral gene delivery method to cold preserved liver grafts. This method offers maximal infectivity of adenoviral vector with minimal technical manipulation

    Incisionless targeted adeno-associated viral vector delivery to the brain by focused ultrasound-mediated intranasal administration

    Get PDF
    BACKGROUND: Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood-brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. METHODS: Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. FINDINGS: FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. INTERPRETATION: Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. FUNDING: National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861

    Surface immobilization of hexa-histidine-tagged adeno-associated viral vectors for localized gene delivery.

    Get PDF
    Adeno-associated viral (AAV) vectors, which are undergoing broad exploration in clinical trials, have significant promise for therapeutic gene delivery because of their safety and delivery efficiency. Gene delivery technologies capable of mediating localized gene expression may further enhance the potential of AAV in a variety of therapeutic applications by reducing spread outside a target region, which may thereby reduce off-target side effects. We have genetically engineered an AAV variant capable of binding to surfaces with high affinity through a hexa-histidine metal-binding interaction. This immobilized AAV vector system mediates high-efficiency delivery to cells that contact the surface and thus may have promise for localized gene delivery, which may aid numerous applications of AAV delivery to gene therapy

    An MRI-visible non-viral vector for targeted Bcl-2 siRNA delivery to neuroblastoma

    Get PDF

    BBB opening with focused ultrasound in nonhuman primates and Parkinson’s disease patients: Targeted AAV vector delivery and PET imaging

    Get PDF
    血液脳関門開放術による遺伝子治療法の開発 --身体を傷つけない脳疾患の治療を目指して--. 京都大学プレスリリース. 2023-04-20.Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson’s disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson’s disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders

    Lung gene therapy—How to capture illumination from the light already present in the tunnel

    Get PDF
    AbstractGene therapy has been considered as the most ideal medical intervention for genetic diseases because it is intended to target the cause of diseases instead of disease symptoms. Availability of techniques for identification of genetic mutations and for in vitro manipulation of genes makes it practical and attractive. After the initial hype in 1990s and later disappointments in clinical trials for more than a decade, light has finally come into the tunnel in recent years, especially in the field of eye gene therapy where it has taken big strides. Clinical trials in gene therapy for retinal degenerative diseases such as Leber's congenital amaurosis (LCA) and choroideremia demonstrated clear therapeutic efficacies without apparent side effects. Although these successful examples are still rare and sporadic in the field, they provide the proof of concept for harnessing the power of gene therapy to treat genetic diseases and to modernize our medication. In addition, those success stories illuminate the path for the development of gene therapy treating other genetic diseases. Because of the differences in target organs and cells, distinct barriers to gene delivery exist in gene therapy for each genetic disease. It is not feasible for authors to review the current development in the entire field. Thus, in this article, we will focus on what we can learn from the current success in gene therapy for retinal degenerative diseases to speed up the gene therapy development for lung diseases, such as cystic fibrosis

    Comparison of the efficiencies of intrathecal and intraganglionic injections in mouse dorsal root ganglion

    Get PDF
    Background/aim: Dorsal root ganglia (DRG) are structures containing primary sensory neurons. Intraganglionic (IG) and intrathecal (IT) applications are the most common methods used for viral vector transfer to DRG. We aim to compare the efficiencies and pathological effects of IT and IG viral vector delivery methods to DRG, through in vivo imaging. Materials and methods: Mice were divided into four groups of six each: IT, IG, IT-vehicle, and IG-vehicle. Adeno-associated virus (AAV) injection was performed for EGFP expression in IT/IG groups. DRGs were made visible through vertebral window surgery and visualized with multiphoton microscopy. After imaging, spinal cords and DRGs were removed and cleared, then imaged with light sheet microscopy. Results: No neuronal death was observed after IT injection, while the death rate was 17% 24 h after IG injection. EGFP expression efficiencies were 90%–95% of neurons in both groups. EGFP expression was only observed in targeted L2 DRG after IG injection, while it was observed in DRGs located between L1-L5 levels after IT injection. Conclusion: IT injection is a more suitable method for labeling DRG neurons in neurodegenerative injury models. However, when the innervation of DRG needs to be specifically studied, IT injection reduces this specificity due to its spread. In these studies, IG injection is the most suitable method for labeling single DRG neurons

    Phosphatase and tensin homologue: a therapeutic target for SMA

    Get PDF
    Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, Survival Motor Neuron1 (SMN1), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons. Significant numbers of motor neurons in SMA mice and SMA cultures are caspase positive with condensed nuclei, suggesting that these cells are prone to a process of cell death called apoptosis. Searching for other potential molecules or signaling pathways that are neuroprotective for central nervous system (CNS) insults is essential for widening the scope of developmental medicine. PTEN, a Phosphatase and Tensin homologue, is a tumor suppressor, which is widely expressed in CNS. PTEN depletion activates anti-apoptotic factors and it is evident that the pathway plays an important protective role in many neurodegenerative disorders. It functions as a negative regulator of PIP3/AKT pathway and thereby modulates its downstream cellular functions through lipid phosphatase activity. Moreover, previous reports from our group demonstrated that, PTEN depletion using viral vector delivery system in SMN delta7 mice reduces disease pathology, with significant rescue on survival rate and the body weight of the SMA mice. Thus knockdown/depletion/mutation of PTEN and manipulation of PTEN medicated Akt/PKB signaling pathway may represent an important therapeutic strategy to promote motor neuron survival in SMA
    corecore