227 research outputs found

    Violating the Shannon capacity of metric graphs with entanglement

    Full text link
    The Shannon capacity of a graph G is the maximum asymptotic rate at which messages can be sent with zero probability of error through a noisy channel with confusability graph G. This extensively studied graph parameter disregards the fact that on atomic scales, Nature behaves in line with quantum mechanics. Entanglement, arguably the most counterintuitive feature of the theory, turns out to be a useful resource for communication across noisy channels. Recently, Leung, Mancinska, Matthews, Ozols and Roy [Comm. Math. Phys. 311, 2012] presented two examples of graphs whose Shannon capacity is strictly less than the capacity attainable if the sender and receiver have entangled quantum systems. Here we give new, possibly infinite, families of graphs for which the entangled capacity exceeds the Shannon capacity.Comment: 15 pages, 2 figure

    Multi-party zero-error classical channel coding with entanglement

    Full text link
    We study the effects of quantum entanglement on the performance of two classical zero-error communication tasks among multiple parties. Both tasks are generalizations of the two-party zero-error channel-coding problem, where a sender and a receiver want to perfectly communicate messages through a one-way classical noisy channel. If the two parties are allowed to share entanglement, there are several positive results that show the existence of channels for which they can communicate strictly more than what they could do with classical resources. In the first task, one sender wants to communicate a common message to multiple receivers. We show that if the number of receivers is greater than a certain threshold then entanglement does not allow for an improvement in the communication for any finite number of uses of the channel. On the other hand, when the number of receivers is fixed, we exhibit a class of channels for which entanglement gives an advantage. The second problem we consider features multiple collaborating senders and one receiver. Classically, cooperation among the senders might allow them to communicate on average more messages than the sum of their individual possibilities. We show that whenever a channel allows single-sender entanglement-assisted advantage, then the gain extends also to the multi-sender case. Furthermore, we show that entanglement allows for a peculiar amplification of information which cannot happen classically, for a fixed number of uses of a channel with multiple senders.Comment: Some proofs have been modifie

    Entanglement-assisted zero-error source-channel coding

    Get PDF
    We study the use of quantum entanglement in the zero-error source-channel coding problem. Here, Alice and Bob are connected by a noisy classical one-way channel, and are given correlated inputs from a random source. Their goal is for Bob to learn Alice's input while using the channel as little as possible. In the zero-error regime, the optimal rates of source codes and channel codes are given by graph parameters known as the Witsenhausen rate and Shannon capacity, respectively. The Lov\'asz theta number, a graph parameter defined by a semidefinite program, gives the best efficiently-computable upper bound on the Shannon capacity and it also upper bounds its entanglement-assisted counterpart. At the same time it was recently shown that the Shannon capacity can be increased if Alice and Bob may use entanglement. Here we partially extend these results to the source-coding problem and to the more general source-channel coding problem. We prove a lower bound on the rate of entanglement-assisted source-codes in terms Szegedy's number (a strengthening of the theta number). This result implies that the theta number lower bounds the entangled variant of the Witsenhausen rate. We also show that entanglement can allow for an unbounded improvement of the asymptotic rate of both classical source codes and classical source-channel codes. Our separation results use low-degree polynomials due to Barrington, Beigel and Rudich, Hadamard matrices due to Xia and Liu and a new application of remote state preparation.Comment: Title has been changed. Previous title was 'Zero-error source-channel coding with entanglement'. Corrected an error in Lemma 1.

    Quantum asymptotic spectra of graphs and non-commutative graphs, and quantum Shannon capacities

    Get PDF
    We study quantum versions of the Shannon capacity of graphs and non-commutative graphs. We introduce the asymptotic spectrum of graphs with respect to quantum homomorphisms and entanglement-assisted homomorphisms, and we introduce the asymptotic spectrum of non-commutative graphs with respect to entanglement-assisted homomorphisms. We apply Strassen's spectral theorem (J. Reine Angew. Math., 1988) and obtain dual characterizations of the corresponding Shannon capacities and asymptotic preorders in terms of their asymptotic spectra. This work extends the study of the asymptotic spectrum of graphs initiated by Zuiddam (Combinatorica, 2019) to the quantum d

    Random matrix techniques in quantum information theory

    Get PDF
    The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels

    On a tracial version of Haemers bound

    Full text link
    We extend upper bounds on the quantum independence number and the quantum Shannon capacity of graphs to their counterparts in the commuting operator model. We introduce a von Neumann algebraic generalization of the fractional Haemers bound (over C\mathbb{C}) and prove that the generalization upper bounds the commuting quantum independence number. We call our bound the tracial Haemers bound, and we prove that it is multiplicative with respect to the strong product. In particular, this makes it an upper bound on the Shannon capacity. The tracial Haemers bound is incomparable with the Lov\'asz theta function, another well-known upper bound on the Shannon capacity. We show that separating the tracial and fractional Haemers bounds would refute Connes' embedding conjecture. Along the way, we prove that the tracial rank and tracial Haemers bound are elements of the (commuting quantum) asymptotic spectrum of graphs (Zuiddam, Combinatorica, 2019). We also show that the inertia bound (an upper bound on the quantum independence number) upper bounds the commuting quantum independence number.Comment: 39 pages, comments are welcom

    Black Hole Thermodynamics

    Full text link
    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.Comment: Invited review article. A few parts based on an earlier review, arXiv:0807.4520. To appear in Int. J. Mod. Phys. D and in "One Hundred Years of General Relativity: Cosmology and Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015). v2: added references and appendi

    Round Elimination in Exact Communication Complexity

    Get PDF
    We study two basic graph parameters, the chromatic number and the orthogonal rank, in the context of classical and quantum exact communication complexity. In particular, we consider two types of communication problems that we call promise equality and list problems. For both of these, it was already known that the one-round classical and one-round quantum complexities are characterized by the chromatic number and orthogonal rank of a certain graph, respectively. In a promise equality problem, Alice and Bob must decide if their inputs are equal or not. We prove that classical protocols for such problems can always be reduced to one-round protocols with no extra communication. In contrast, we give an explicit instance of a promise problem that exhibits an exponential gap between the one- and two-round exact quantum communication complexities. Whereas the chromatic number thus captures the complete complexity of promise equality problems, the hierarchy of "quantum chromatic numbers" (starting with the orthogonal rank) giving the quantum communication complexity for every fixed number of communication rounds thus turns out to enjoy a much richer structure. In a list problem, Bob gets a subset of some finite universe, Alice gets an element from Bob\u27s subset, and their goal is for Bob to learn which element Alice was given. The best general lower bound (due to Orlitsky) and upper bound (due to Naor, Orlitsky, and Shor) on the classical communication complexity of such problems differ only by a constant factor. We exhibit an example showing that, somewhat surprisingly, the four-round protocol used in the bound of Naor et al. can in fact be optimal. Finally, we pose a conjecture on the orthogonality rank of a certain graph whose truth would imply an intriguing impossibility of round elimination in quantum protocols for list problems, something that works trivially in the classical case
    • 

    corecore