271 research outputs found

    Learning-guided network fuzzing for testing cyber-physical system defences

    Get PDF
    The threat of attack faced by cyber-physical systems (CPSs), especially when they play a critical role in automating public infrastructure, has motivated research into a wide variety of attack defence mechanisms. Assessing their effectiveness is challenging, however, as realistic sets of attacks to test them against are not always available. In this paper, we propose smart fuzzing, an automated, machine learning guided technique for systematically finding 'test suites' of CPS network attacks, without requiring any knowledge of the system's control programs or physical processes. Our approach uses predictive machine learning models and metaheuristic search algorithms to guide the fuzzing of actuators so as to drive the CPS into different unsafe physical states. We demonstrate the efficacy of smart fuzzing by implementing it for two real-world CPS testbeds---a water purification plant and a water distribution system---finding attacks that drive them into 27 different unsafe states involving water flow, pressure, and tank levels, including six that were not covered by an established attack benchmark. Finally, we use our approach to test the effectiveness of an invariant-based defence system for the water treatment plant, finding two attacks that were not detected by its physical invariant checks, highlighting a potential weakness that could be exploited in certain conditions.Comment: Accepted by ASE 201

    The flavour singlet mesons in QCD

    Get PDF
    We study the flavour singlet mesons from first principles using lattice QCD. We explore the splitting between flavour singlet and non-singlet for vector and axial mesons as well as the more commonly studied cases of the scalar and pseudoscalar mesons.Comment: 12 pages, LATEX, 4 ps figure

    An Analysis of How Many Undiscovered Vulnerabilities Remain in Information Systems

    Full text link
    Vulnerability management strategy, from both organizational and public policy perspectives, hinges on an understanding of the supply of undiscovered vulnerabilities. If the number of undiscovered vulnerabilities is small enough, then a reasonable investment strategy would be to focus on finding and removing the remaining undiscovered vulnerabilities. If the number of undiscovered vulnerabilities is and will continue to be large, then a better investment strategy would be to focus on quick patch dissemination and engineering resilient systems. This paper examines a paradigm, namely that the number of undiscovered vulnerabilities is manageably small, through the lens of mathematical concepts from the theory of computing. From this perspective, we find little support for the paradigm of limited undiscovered vulnerabilities. We then briefly support the notion that these theory-based conclusions are relevant to practical computers in use today. We find no reason to believe undiscovered vulnerabilities are not essentially unlimited in practice and we examine the possible economic impacts should this be the case. Based on our analysis, we recommend vulnerability management strategy adopts an approach favoring quick patch dissemination and engineering resilient systems, while continuing good software engineering practices to reduce (but never eliminate) vulnerabilities in information systems

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Using grid computing for large scale fuzzing

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2010Neste projeto, o nosso objetivo é usar a técnica de teste de fuzzing, que fornece dados inválidos, inesperados ou aleatórios para a entrada de um programa para nele tentar encontrar vulnerabilidades. Os resultados do teste fornecem ao programador informações para melhorar o programa, nomedamente para torná-lo mais seguro. Um ambiente de computação em grade é usado para suportar o fuzzing das aplicações usando simultaneamente os recursos de vários computadores em uma rede, a fim de paralelizar o processo e permitir tentar muitas entradas diferentes. Um trabalho de fuzzing é dividido em várias tarefas de fuzzing e distribuído aos recursos de rede que se encontrem livres para que a operação seja realizada. Um broker recebe as solicitações de fuzzing de clientes, e insere a divisão de tarefas num servidor Web, como o Apache. Quando os recursos da rede estão disponíveis, as tarefas de difusão são descarregadas a partir do servidor web e automaticamente executadas e os resultados retornados ao serviço de coordenação. O serviço de coordenação Zookeeper é usado para sincronizar o broker, o servidor web e dos recursos.In this project, our goal is to use a testing technique called fuzzing that provides invalid, unexpected or random data to the input fields of an application to find vulnerabilities in the same application. The testing results provide a programmer with information to improve the program, making it more secure. A Grid computing environment was designed to support the fuzzing of applications, by using simultaneously the resources of many computers in a network, in order to parallelize the process and allow trying many different inputs. One fuzzing job is divided into many fuzzing tasks and distributed to the free network resources for fuzzing. A broker gets the fuzzing requests from clients, and then inserts the split fuzzing tasks into a Web server, like Apache. When resources in the network are available, fuzzing tasks will be downloaded from the web server and resources will automatically execute these tasks and return the results to ZooKeeper. The ZooKeeper coordination service is used for synchronizing the broker, the web server and the resources
    corecore