78 research outputs found

    Validation of S-NPP VIIRS Day-Night Band and M Bands Performance Using Ground Reference Targets of Libya 4 and Dome C

    Get PDF
    This paper provides methodologies developed and implemented by the NASA VIIRS Calibration Support Team (VCST) to validate the S-NPP VIIRS Day-Night band (DNB) and M bands calibration performance. The Sensor Data Records produced by the Interface Data Processing Segment (IDPS) and NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired nearly nadir overpass for Libya 4 desert and Dome C snow surfaces. In the past 3.5 years, the modulated relative spectral responses (RSR) change with time and lead to 3.8% increase on the DNB sensed solar irradiance and 0.1% or less increases on the M4-M7 bands. After excluding data before April 5th, 2013, IDPS DNB radiance and reflectance data are consistent with Land PEATE data with 0.6% or less difference for Libya 4 site and 2% or less difference for Dome C site. These difference are caused by inconsistent LUTs and algorithms used in calibration. In Libya 4 site, the SCIAMACHY spectral and modulated RSR derived top of atmosphere (TOA) reflectance are compared with Land PEATE TOA reflectance and they indicate a decrease of 1.2% and 1.3%, respectively. The radiance of Land PEATE DNB are compared with the simulated radiance from aggregated M bands (M4, M5, and M7). These data trends match well with 2% or less difference for Libya 4 site and 4% or less difference for Dome C. This study demonstrate the consistent quality of DNB and M bands calibration for Land PEATE products during operational period and for IDPS products after April 5th, 2013

    VIIRS On-Orbit Calibration and Performance Update

    Get PDF
    The S-NPP VIIRS was launched on October 28, 2011 and activated on November 8, and then went through a series of intensive functional tests in order to establish the sensor's baseline characteristics and initial on-orbit performance. With the exception of large optical degradation in the NIR and SWIR spectral regions that is due to pre-launch mirror coating contamination, both the VIIRS instrument and its on-board calibrators continue to operate and function normally. With continuous dedicated effort, it is expected that most of the sensor calibration parameters will continue to meet their design requirements and that high quality data products will be continuously generated and used by the operational as well as research community

    NPP VIIRS and Aqua MODIS RSB Comparison Using Observations from Simultaneous Nadir Overpasses (SNO)

    Get PDF
    Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) began to daily collect global data following its successful launch on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key NPP sensor. Similar to the design of the OLS, SeaWiFS and MODIS instruments, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. Immediately after the VIIRS nadir door s opening on November 21, 2011, anomalously large degradation in the SD response was identified in the near-IR wavelength region, which was unexpected as decreases in the SD reflectance usually occur gradually in the blue (~0.4 m) wavelength region based on past experience. In this study, we use a well-calibrated Aqua MODIS as reference to track and evaluate VIIRS RSB stability and performance. Reflectances observed by both sensors from simultaneous nadir overpasses (SNO) are used to determine VIIRS to MODIS reflectance ratios for their spectral matching bands. Results of this study provide an immediate post-launch assessment, independent validation of the anomalous degradation observed in SD measurements at near-IR wavelengths and initial analysis of calibration stability and consistency

    MODIS Solar Diffuser Degradation Determination and Its Spectral Dependency

    Get PDF
    This study presents a modeling approach to improve solar diffuser (SD) degradation determination from SD stability monitor (SDSM) measurements. The MODIS instrument uses a SDto calibrate its reflective solar bands (RSBs) on-orbit. Due to the imperfectly designed SDSM sun view screen, the SD reflectance tracked by SDSM has large noise. The SDSM measurements noise is spectrally coherent and can be minimized by normalizing measurements to the least degradeddetector 9 (936 nm). In this study, a SD degradation model is used to determine the SDdegradation's wavelength dependency and the detector 9 degradation is estimated by the model solution.The results show the SD degradations measured at 6 SDSM detectors (554 _ 936 nm) have stable relationships, where the degradation is inversely proportion to 1/wavelength^4. The model estimated SD degradation at SDSM detector 9 wavelength (936 nm) is ~0.9% from 2002 to 2018.Based on the SD degradation model solution, the SD degradation at short/mid wave bands are estimated to improve short/mid wave bands calibration. The model can also be used to improve interpolating SD degradation at SDSM detectors to RSB wavelengths. Compared to linear interpolation, bands 9 and 10 show the largest differences of up to 0.3 and 0.4% respectively. These differences directly impact the calibration coefficients of these bands

    Cross Calibration of SeaWiFS and MODIS Using On-Orbit Observations of the Moon

    Get PDF
    Observations of the Moon provide a primary technique for the on-orbit cross calibration of Earth remote sensing instruments. Monthly lunar observations are major components of the on-orbit calibration strategies of SeaWiFS and MODIS. SeaWiFS has collected more than 132 low phase angle and 59 high phase angle lunar observations over 12 years, Terra MODIS has collected more than 82 scheduled and 297 unscheduled lunar observations over 9 years, and Aqua MODIS has collected more than 61 scheduled and 171 unscheduled lunar observations over 7 years. The NASA Ocean Biology Processing Group s Calibration and Validation Team and the NASA MODIS Characterization Support Team use the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon to compare these time series of lunar observations over time and varying observing geometries. The cross calibration results show that Terra MODIS and Aqua MODIS agree, band-to-band, at the 1-3% level, while SeaWiFS and either MODIS instrument agree at the 3-8% level. The combined uncertainties of these comparisons are 1.3% for Terra and Aqua MODIS, 1.4% for SeaWiFS and Terra MODIS, and 1.3% for SeaWiFS and Aqua MODIS. Any residual phase dependence in the ROLO model, based on these observations, is less than 1.7% over the phase angle range of -80deg to -6deg and +5deg to +82deg . The lunar cross calibration of SeaWiFS, Terra MODIS, and Aqua MODIS is consistent with the vicarious calibration of ocean color products for these instruments, with the vicarious gains mitigating the calibration biases for the ocean color bands

    Calibration Uncertainty in Ocean Color Satellite Sensors and Trends in Long-term Environmental Records

    Get PDF
    Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research

    State of Climate 2011 - Global Ocean Phytoplankton

    Get PDF
    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zon

    Cross-Calibration of S-NPP VIIRS Moderate Resolution Reflective Solar Bands Against MODIS Aqua over Dark Water Scenes

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and 7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity

    Results from the Deep-Convective Clouds (DCC) Based Response Versus Scan-Angle (RVS) Characterization for the MODIS Reflective Solar Bands

    Get PDF
    The Terra and Aqua MODIS scan mirror reflectance is a function of the angle of incidence (AOI) and was characterized prior to launch by the instrument vendor. The relative change of the prelaunch response versus scan-angle (RVS) is tracked and linearly scaled on-orbit using observations at two AOIs of 11.2deg and 50.2deg corresponding to the moon view and solar diffuser, respectively. As the missions continue to operate well beyond their design life of 6 years, the assumption of linear scaling between the two AOIs is known to be inadequate in accurately characterizing the RVS, particularly at short wavelengths. Consequently, an enhanced approach of supplementing the on-board measurements with response trends from desert pseudo-invariant calibration sites (PICS) was formulated in MODIS Collection 6 (C6). An underlying assumption for the continued effectiveness of this approach is the long-term (multi-year) and short-term (month-to-month) stability of the PICS. Previous work has shown that the deep convective clouds (DCC) can also be used to monitor the on-orbit RVS performance with less trend uncertainties than desert sites. In this paper, the raw sensor response to the DCC is used to characterize the on-orbit RVS on a band and mirror side basis. These DCC-based RVS results are compared with the C6 PICS-based RVS, showing an agreement within 2% observed in most cases. The pros and cons of using a DCC-based RVS approach are also discussed in this paper. Although this reaffirms the efficacy of the C6 PICS-based RVS, the DCC-based RVS approach presents itself as an effective alternative for future considerations. Potential applications of this approach to other instruments such as SNPP and JPSS VIIRS are also discussed
    • …
    corecore