286 research outputs found

    Navigation domain representation for interactive multiview imaging

    Full text link
    Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives towards rich multimedia applications, it requires the design of novel representations and coding techniques in order to solve the new challenges imposed by interactive navigation. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server can generally not transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Hence, our new framework represents a promising solution for 3D data representation in novel interactive multimedia services

    In-Network View Synthesis for Interactive Multiview Video Systems

    Get PDF
    To enable Interactive multiview video systems with a minimum view-switching delay, multiple camera views are sent to the users, which are used as reference images to synthesize additional virtual views via depth-image-based rendering. In practice, bandwidth constraints may however restrict the number of reference views sent to clients per time unit, which may in turn limit the quality of the synthesized viewpoints. We argue that the reference view selection should ideally be performed close to the users, and we study the problem of in-network reference view synthesis such that the navigation quality is maximized at the clients. We consider a distributed cloud network architecture where data stored in a main cloud is delivered to end users with the help of cloudlets, i.e., resource-rich proxies close to the users. In order to satisfy last-hop bandwidth constraints from the cloudlet to the users, a cloudlet re-samples viewpoints of the 3D scene into a discrete set of views (combination of received camera views and virtual views synthesized) to be used as reference for the synthesis of additional virtual views at the client. This in-network synthesis leads to better viewpoint sampling given a bandwidth constraint compared to simple selection of camera views, but it may however carry a distortion penalty in the cloudlet-synthesized reference views. We therefore cast a new reference view selection problem where the best subset of views is defined as the one minimizing the distortion over a view navigation window defined by the user under some transmission bandwidth constraints. We show that the view selection problem is NP-hard, and propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem. Simulation results finally confirm the performance gain offered by virtual view synthesis in the network

    Viewpoint switching in multiview videos using SP-frames

    Full text link
    The distinguishing feature of multiview video lies in the interactivity, which allows users to select their favourite viewpoint. It switches bitstream at a particular view when necessary instead of transmitting all the views. The new SP-frame in H.264 is originally developed for multiple bit-rate streaming with the support of seamless switching. The SP-frame can also be directly employed in the viewpoint switching of multiview videos. Notwithstanding the guarantee of seamless switching using SP-frames, the cost is the bulky size of secondary SP-frames. This induces a significant amount of additional space or bandwidth for storage or transmission, especially for the multiview scenario. For this reason, a new motion estimation and compensation technique operating in the quantized transform (QDCT) domain is designed for coding secondary SP-frame in this paper. Our proposed work aims at keeping the secondary SP-frames as small as possible without affecting the size of primary SP-frames by incorporating QDCT-domain motion estimation and compensation in the secondary SP-frame coding. Simulation results show that the size of secondary SP-frames can be reduced remarkably in viewpoint switching. Index Terms — Multiview, viewpoint switching, SP-frame, QDCT-domain, motion estimatio

    Optimized Data Representation for Interactive Multiview Navigation

    Get PDF
    In contrary to traditional media streaming services where a unique media content is delivered to different users, interactive multiview navigation applications enable users to choose their own viewpoints and freely navigate in a 3-D scene. The interactivity brings new challenges in addition to the classical rate-distortion trade-off, which considers only the compression performance and viewing quality. On the one hand, interactivity necessitates sufficient viewpoints for richer navigation; on the other hand, it requires to provide low bandwidth and delay costs for smooth navigation during view transitions. In this paper, we formally describe the novel trade-offs posed by the navigation interactivity and classical rate-distortion criterion. Based on an original formulation, we look for the optimal design of the data representation by introducing novel rate and distortion models and practical solving algorithms. Experiments show that the proposed data representation method outperforms the baseline solution by providing lower resource consumptions and higher visual quality in all navigation configurations, which certainly confirms the potential of the proposed data representation in practical interactive navigation systems

    Dünaamiline kiiruse jaotamine interaktiivses mitmevaatelises video vaatevahetuse ennustamineses

    Get PDF
    In Interactive Multi-View Video (IMVV), the video has been captured by numbers of cameras positioned in array and transmitted those camera views to users. The user can interact with the transmitted video content by choosing viewpoints (views from different cameras in the array) with the expectation of minimum transmission delay while changing among various views. View switching delay is one of the primary concern that is dealt in this thesis work, where the contribution is to minimize the transmission delay of new view switch frame through a novel process of selection of the predicted view and compression considering the transmission efficiency. Mainly considered a realtime IMVV streaming, and the view switch is mapped as discrete Markov chain, where the transition probability is derived using Zipf distribution, which provides information regarding view switch prediction. To eliminate Round-Trip Time (RTT) transmission delay, Quantization Parameters (QP) are adaptively allocated to the remaining redundant transmitted frames to maintain view switching time minimum, trading off with the quality of the video till RTT time-span. The experimental results of the proposed method show superior performance on PSNR and view switching delay for better viewing quality over the existing methods
    corecore