3,610 research outputs found

    The visual, the auditory and the haptic – A user study on combining modalities in virtual worlds

    Get PDF
    Fröhlich J, Wachsmuth I. The visual, the auditory and the haptic – A user study on combining modalities in virtual worlds. In: Shumaker R, ed. Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments. Lecture Notes in Computer Science. Vol 8021. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 159-168.In order to make a step further towards understanding the impact of multi-modal stimuli in Virtual Reality we conducted a user study with 80 participants performing tasks in a virtual pit environment. Participants were divided into four groups, each presented a different combination of multi-sensory stimuli. Those included real-time 3D graphics, audio stimuli (ambient, static and event sounds), and haptics consisting of wind and tactile feedback when touching objects. A presence questionnaire was used to evaluate subjectively reported presence on the one hand, and on the other physiological sensors were used to measure heart rate and skin conductance as an objective measure. Results strongly indicate that an increase of modalities does not automatically result in an increase of presence

    7th TĂĽbingen Perception Conference: TWK 2004

    No full text

    Modeling online adaptive navigation in virtual environments based on PID control

    Full text link
    It is well known that locomotion-dominated navigation tasks may highly provoke cybersickness effects. Past research has proposed numerous approaches to tackle this issue based on offline considerations. In this work, a novel approach to mitigate cybersickness is presented based on online adaptative navigation. Considering the Proportional-Integral-Derivative (PID) control method, we proposed a mathematical model for online adaptive navigation parameterized with several parameters, taking as input the users' electro-dermal activity (EDA), an efficient indicator to measure the cybersickness level, and providing as output adapted navigation accelerations. Therefore, minimizing the cybersickness level is regarded as an argument optimization problem: find the PID model parameters which can reduce the severity of cybersickness. User studies were organized to collect non-adapted navigation accelerations and the corresponding EDA signals. A deep neural network was then formulated to learn the correlation between EDA and navigation accelerations. The hyperparameters of the network were obtained through the Optuna open-source framework. To validate the performance of the optimized online adaptive navigation developed through the PID control, we performed an analysis in a simulated user study based on the pre-trained deep neural network. Results indicate a significant reduction of cybersickness in terms of EDA signal analysis and motion sickness dose value. This is a pioneering work which presented a systematic strategy for adaptive navigation settings from a theoretical point

    Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex

    Get PDF
    AbstractThe “parahippocampal place area” (PPA) responds more strongly in functional magnetic resonance imaging (fMRI) to scenes than to faces, objects, or other visual stimuli. We used an event-related fMRI adaptation paradigm to test whether the PPA represents scenes in a viewpoint-specific or viewpoint-invariant manner. The PPA responded just as strongly to viewpoint changes that preserved intrinsic scene geometry as it did to complete scene changes, but less strongly to object changes within the scene. In contrast, lateral occipital cortex responded more strongly to object changes than to spatial changes. These results demonstrate that scene processing in the PPA is viewpoint specific and suggest that the PPA represents the relationship between the observer and the surfaces that define local space

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading
    • …
    corecore