194 research outputs found

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    abstract: Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.View the article as published at https://www.hindawi.com/journals/tswj/2014/189481

    Scalable Multiple Description Coding and Distributed Video Streaming over 3G Mobile Networks

    Get PDF
    In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems in the wireless networks and further enhance the error resilience tools in Moving Pictures Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple description coding (MDC) is explored. It leverages a proposed distributed multimedia delivery mobile network (D-MDMN) to provide path diversity to combat streaming video outage due to handoff in Universal Mobile Telecommunications System (UMTS). The corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff procedures in D-MDMN are studied in details, which employ the principle of video stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm is proposed to support the unequal error protection (UEP) of LC components of SMDC. Performance evaluation is carried through simulation using OPNET Modeler 9. 0. Simulation results show that the proposed handoff procedures in D-MDMN have better performance in terms of handoff latency, end-to-end delay and handoff scalability than that in UMTS. Performance evaluation of our proposed IP DiffServ video marking algorithm is also undertaken, which shows that it is more suitable for video streaming in IP mobile networks compared with the previously proposed DiffServ video marking algorithm (DVMA)

    WIC midwintermeeting on IP-television (IP-TV):proceedings of a one-day workshop, Eindhoven, January 19, 2007

    Get PDF

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Get PDF
    In this paper we propose a novel variable bit rate (VBR) controller for real-time H.264/scalable video coding (SVC) applications. The proposed VBR controller relies on the fact that consecutive pictures within the same scene often exhibit similar degrees of complexity, and consequently should be encoded using similar quantization parameter (QP) values for the sake of quality consistency. In oder to prevent unnecessary QP fluctuations, the proposed VBR controller allows for just an incremental variation of QP with respect to that of the previous picture, focusing on the design of an effective method for estimating this QP variation. The implementation in H.264/SVC requires to locate a rate controller at each dependency layer (spatial or coarse grain scalability). In particular, the QP increment estimation at each layer is computed by means of a radial basis function (RBF) network that is specially designed for this purpose. Furthermore, the RBF network design process was conceived to provide an effective solution for a wide range of practical real-time VBR applications for scalable video content delivery. In order to assess the proposed VBR controller, two real-time application scenarios were simulated: mobile live streaming and IPTV broadcast. It was compared to constant QP encoding and a recently proposed constant bit rate (CBR) controller for H.264/SVC. The experimental results show that the proposed method achieves remarkably consistent quality, outperforming the reference CBR controller in the two scenarios for all the spatio-temporal resolutions considered.Proyecto CCG10-UC3M/TIC-5570 de la Comunidad AutĂłnoma de Madrid y Universidad Carlos III de MadridPublicad

    Qos concept for scalable MPEG-4 video object decoding on multimedia (NoC) chips

    Full text link

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Full text link
    • …
    corecore