39 research outputs found

    On the Reconstruction of Geodesic Subspaces of RN\mathbb{R}^N

    Full text link
    We consider the topological and geometric reconstruction of a geodesic subspace of RN\mathbb{R}^N both from the \v{C}ech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our reconstruction technique leverages the intrinsic length metric induced by the geodesics on the subspace. We consider the distortion and convexity radius as our sampling parameters for a successful reconstruction. For a geodesic subspace with finite distortion and positive convexity radius, we guarantee a correct computation of its homotopy and homology groups from the sample. For geodesic subspaces of R2\mathbb{R}^2, we also devise an algorithm to output a homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown shape of interest

    Persistence stability for geometric complexes

    Full text link
    In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris-Rips, Cech and witness complexes) built on top of precompact spaces. Using recent developments in the theory of topological persistence we provide simple and natural proofs of the stability of the persistent homology of such complexes with respect to the Gromov--Hausdorff distance. We also exhibit a few noteworthy properties of the homology of the Rips and Cech complexes built on top of compact spaces.Comment: We include a discussion of ambient Cech complexes and a new class of examples called Dowker complexe

    Dimension Detection with Local Homology

    Full text link
    Detecting the dimension of a hidden manifold from a point sample has become an important problem in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying the processes or phenomena associated to the data. Among the many dimension detection algorithms proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated dimension. However, the correctness usually requires certain regularity of the input: the input points are either uniformly randomly sampled in a statistical setting, or they form the so-called (ε,δ)(\varepsilon,\delta)-sample which can be neither too dense nor too sparse. Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably correct and works under a more relaxed sampling condition: we do not require uniformity, and we also allow Hausdorff noise. Our approach detects dimension by determining local homology. The computation of this topological structure is much less sensitive to the local distribution of points, which leads to the relaxation of the sampling conditions. Furthermore, by leveraging various developments in computational topology, we show that this local homology at a point zz can be computed \emph{exactly} for manifolds using Vietoris-Rips complexes whose vertices are confined within a local neighborhood of zz. We implement our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and real data sets

    Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex

    Get PDF
    We derive conditions under which the reconstruction of a target space is topologically correct via the ?ech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theoretical results. First, we describe sufficient conditions under which any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set is contractible, so that the Nerve theorem applies for the restricted ?ech complex. Second, we demonstrate the homotopy equivalence of a positive ?-reach set and its offsets. Applying these results to the restricted ?ech complex and using the interleaving relations with the ?ech complex (or the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy equivalent to the ?ech complex (or the Vietoris-Rips complex), in terms of the ?-reach. Our results sharpen existing results

    Persistence Bag-of-Words for Topological Data Analysis

    Full text link
    Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs). PDs exhibit, however, complex structure and are difficult to integrate in today's machine learning workflows. This paper introduces persistence bag-of-words: a novel and stable vectorized representation of PDs that enables the seamless integration with machine learning. Comprehensive experiments show that the new representation achieves state-of-the-art performance and beyond in much less time than alternative approaches.Comment: Accepted for the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI-19). arXiv admin note: substantial text overlap with arXiv:1802.0485

    High-Dimensional Topological Data Analysis

    Get PDF
    International audienceModern data often come as point clouds embedded in high dimensional Euclidean spaces, or possibly more general metric spaces. They are usually not distributed uniformly, but lie around some highly nonlinear geometric structures with nontrivial topology. Topological data analysis (TDA) is an emerging field whose goal is to provide mathematical and algorithmic tools to understand the topological and geometric structure of data. This chapter provides a short introduction to this new field through a few selected topics. The focus is deliberately put on the mathematical foundations rather than specific applications, with a particular attention to stability results asserting the relevance of the topological information inferred from data

    Computational Topology Techniques for Characterizing Time-Series Data

    Full text link
    Topological data analysis (TDA), while abstract, allows a characterization of time-series data obtained from nonlinear and complex dynamical systems. Though it is surprising that such an abstract measure of structure - counting pieces and holes - could be useful for real-world data, TDA lets us compare different systems, and even do membership testing or change-point detection. However, TDA is computationally expensive and involves a number of free parameters. This complexity can be obviated by coarse-graining, using a construct called the witness complex. The parametric dependence gives rise to the concept of persistent homology: how shape changes with scale. Its results allow us to distinguish time-series data from different systems - e.g., the same note played on different musical instruments.Comment: 12 pages, 6 Figures, 1 Table, The Sixteenth International Symposium on Intelligent Data Analysis (IDA 2017
    corecore