13 research outputs found

    Unified Embedding and Metric Learning for Zero-Exemplar Event Detection

    Get PDF
    Event detection in unconstrained videos is conceived as a content-based video retrieval with two modalities: textual and visual. Given a text describing a novel event, the goal is to rank related videos accordingly. This task is zero-exemplar, no video examples are given to the novel event. Related works train a bank of concept detectors on external data sources. These detectors predict confidence scores for test videos, which are ranked and retrieved accordingly. In contrast, we learn a joint space in which the visual and textual representations are embedded. The space casts a novel event as a probability of pre-defined events. Also, it learns to measure the distance between an event and its related videos. Our model is trained end-to-end on publicly available EventNet. When applied to TRECVID Multimedia Event Detection dataset, it outperforms the state-of-the-art by a considerable margin.Comment: IEEE CVPR 201

    Video2vec Embeddings Recognize Events when Examples are Scarce

    Get PDF

    Video2vec Embeddings Recognize Events when Examples are Scarce

    Get PDF

    Are All Combinations Equal? Combining Textual and Visual Features with Multiple Space Learning for Text-Based Video Retrieval

    Full text link
    In this paper we tackle the cross-modal video retrieval problem and, more specifically, we focus on text-to-video retrieval. We investigate how to optimally combine multiple diverse textual and visual features into feature pairs that lead to generating multiple joint feature spaces, which encode text-video pairs into comparable representations. To learn these representations our proposed network architecture is trained by following a multiple space learning procedure. Moreover, at the retrieval stage, we introduce additional softmax operations for revising the inferred query-video similarities. Extensive experiments in several setups based on three large-scale datasets (IACC.3, V3C1, and MSR-VTT) lead to conclusions on how to best combine text-visual features and document the performance of the proposed network. Source code is made publicly available at: https://github.com/bmezaris/TextToVideoRetrieval-TtimesVComment: Accepted for publication; to be included in Proc. ECCV Workshops 2022. The version posted here is the "submitted manuscript" versio
    corecore