158 research outputs found

    A Data-Driven Approach for Tag Refinement and Localization in Web Videos

    Get PDF
    Tagging of visual content is becoming more and more widespread as web-based services and social networks have popularized tagging functionalities among their users. These user-generated tags are used to ease browsing and exploration of media collections, e.g. using tag clouds, or to retrieve multimedia content. However, not all media are equally tagged by users. Using the current systems is easy to tag a single photo, and even tagging a part of a photo, like a face, has become common in sites like Flickr and Facebook. On the other hand, tagging a video sequence is more complicated and time consuming, so that users just tag the overall content of a video. In this paper we present a method for automatic video annotation that increases the number of tags originally provided by users, and localizes them temporally, associating tags to keyframes. Our approach exploits collective knowledge embedded in user-generated tags and web sources, and visual similarity of keyframes and images uploaded to social sites like YouTube and Flickr, as well as web sources like Google and Bing. Given a keyframe, our method is able to select on the fly from these visual sources the training exemplars that should be the most relevant for this test sample, and proceeds to transfer labels across similar images. Compared to existing video tagging approaches that require training classifiers for each tag, our system has few parameters, is easy to implement and can deal with an open vocabulary scenario. We demonstrate the approach on tag refinement and localization on DUT-WEBV, a large dataset of web videos, and show state-of-the-art results.Comment: Preprint submitted to Computer Vision and Image Understanding (CVIU

    Attribute Learning for Image/Video Understanding

    Get PDF
    PhDFor the past decade computer vision research has achieved increasing success in visual recognition including object detection and video classification. Nevertheless, these achievements still cannot meet the urgent needs of image and video understanding. The recently rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. In particular, these types of media data usually contain very complex social activities of a group of people (e.g. YouTube video of a wedding reception) and are captured by consumer devices with poor visual quality. Thus it is extremely challenging to automatically understand such a high number of complex image and video categories, especially when these categories have never been seen before. One way to understand categories with no or few examples is by transfer learning which transfers knowledge across related domains, tasks, or distributions. In particular, recently lifelong learning has become popular which aims at transferring information to tasks without any observed data. In computer vision, transfer learning often takes the form of attribute learning. The key underpinning idea of attribute learning is to exploit transfer learning via an intermediatelevel semantic representations – attributes. The semantic attributes are most commonly used as a semantically meaningful bridge between low feature data and higher level class concepts, since they can be used both descriptively (e.g., ’has legs’) and discriminatively (e.g., ’cats have it but dogs do not’). Previous works propose many different attribute learning models for image and video understanding. However, there are several intrinsic limitations and problems that exist in previous attribute learning work. Such limitations discussed in this thesis include limitations of user-defined attributes, projection domain-shift problems, prototype sparsity problems, inability to combine multiple semantic representations and noisy annotations of relative attributes. To tackle these limitations, this thesis explores attribute learning on image and video understanding from the following three aspects. Firstly to break the limitations of user-defined attributes, a framework for learning latent attributes is present for automatic classification and annotation of unstructured group social activity in videos, which enables the tasks of attribute learning for understanding complex multimedia data with sparse and incomplete labels. We investigate the learning of latent attributes for content-based understanding, which aims to model and predict classes and tags relevant to objects, sounds and events – anything likely to be used by humans to describe or search for media. Secondly, we propose the framework of transductive multi-view embedding hypergraph label propagation and solve three inherent limitations of most previous attribute learning work, i.e., the projection domain shift problems, the prototype sparsity problems and the inability to combine multiple semantic representations. We explore the manifold structure of the data distributions of different views projected onto the same embedding space via label propagation on a graph. Thirdly a novel framework for robust learning is presented to effectively learn relative attributes from the extremely noisy and sparse annotations. Relative attributes are increasingly learned from pairwise comparisons collected via crowdsourcing tools which are more economic and scalable than the conventional laboratory based data annotation. However, a major challenge for taking a crowdsourcing strategy is the detection and pruning of outliers. We thus propose a principled way to identify annotation outliers by formulating the relative attribute prediction task as a unified robust learning to rank problem, tackling both the outlier detection and relative attribute prediction tasks jointly. In summary, this thesis studies and solves the key challenges and limitations of attribute learning in image/video understanding. We show the benefits of solving these challenges and limitations in our approach which thus achieves better performance than previous methods

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Browse-to-search

    Full text link
    This demonstration presents a novel interactive online shopping application based on visual search technologies. When users want to buy something on a shopping site, they usually have the requirement of looking for related information from other web sites. Therefore users need to switch between the web page being browsed and other websites that provide search results. The proposed application enables users to naturally search products of interest when they browse a web page, and make their even causal purchase intent easily satisfied. The interactive shopping experience is characterized by: 1) in session - it allows users to specify the purchase intent in the browsing session, instead of leaving the current page and navigating to other websites; 2) in context - -the browsed web page provides implicit context information which helps infer user purchase preferences; 3) in focus - users easily specify their search interest using gesture on touch devices and do not need to formulate queries in search box; 4) natural-gesture inputs and visual-based search provides users a natural shopping experience. The system is evaluated against a data set consisting of several millions commercial product images. © 2012 Authors

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Complex query learning in semantic video search

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    A novel relational regularization feature selection method for joint regression and classification in AD diagnosis

    Get PDF
    In this paper, we focus on joint regression and classification for Alzheimer’s disease diagnosis and propose a new feature selection method by embedding the relational information inherent in the observations into a sparse multi-task learning framework. Specifically, the relational information includes three kinds of relationships (such as feature-feature relation, response-response relation, and sample-sample relation), for preserving three kinds of the similarity, such as for the features, the response variables, and the samples, respectively. To conduct feature selection, we first formulate the objective function by imposing these three relational characteristics along with an ℓ2,1-norm regularization term, and further propose a computationally efficient algorithm to optimize the proposed objective function. With the reduced data, we train two support vector regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and also a support vector classification model to determine the clinical label. We conducted extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to validate the effectiveness of the proposed method. Our experimental results showed the efficacy of the proposed method in enhancing the performances of both clinical score prediction and disease status identification, compared to the state-of-the-art methods
    corecore