817 research outputs found

    Exploiting Image-trained CNN Architectures for Unconstrained Video Classification

    Full text link
    We conduct an in-depth exploration of different strategies for doing event detection in videos using convolutional neural networks (CNNs) trained for image classification. We study different ways of performing spatial and temporal pooling, feature normalization, choice of CNN layers as well as choice of classifiers. Making judicious choices along these dimensions led to a very significant increase in performance over more naive approaches that have been used till now. We evaluate our approach on the challenging TRECVID MED'14 dataset with two popular CNN architectures pretrained on ImageNet. On this MED'14 dataset, our methods, based entirely on image-trained CNN features, can outperform several state-of-the-art non-CNN models. Our proposed late fusion of CNN- and motion-based features can further increase the mean average precision (mAP) on MED'14 from 34.95% to 38.74%. The fusion approach achieves the state-of-the-art classification performance on the challenging UCF-101 dataset

    New Hybrid Deep Learning Method to Recognize Human Action from Video

    Get PDF
    There has been a tremendous increase in internet users and enough bandwidth in recent years. Because Internet connectivity is so inexpensive, information sharing (text, audio, and video) has become more popular and faster. This video content must be examined in order to classify it for different purposes for users. Several machine learning approaches for video classification have been developed to save users time and energy. The use of deep neural networks to recognize human behavior has become a popular issue in recent years. Although significant progress has been made in the field of video recognition, there are still numerous challenges in the realm of video to be overcome. Convolutional neural networks (CNNs) are well-known for requiring a fixed-size image input, which limits the network topology and reduces identification accuracy. Despite the fact that this problem has been solved in the world of photos, it has yet to be solved in the area of video. We present a ten stacked three-dimensional (3D) convolutional network based on the spatial pyramid-based pooling to handle the input problem of fixed size video frames in video recognition. The network structure is made up of three sections, as the name suggests: a ten-layer stacked 3DCNN, DenseNet, and SPPNet. A KTH dataset was used to test our algorithms. The experimental findings showed that our model outperformed existing models in the area of video-based behavior identification by 2% margin accuracy

    DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers

    Get PDF
    In this paper, a new method for generating object and action proposals in images and videos is proposed. It builds on activations of different convolutional layers of a pretrained CNN, combining the localization accuracy of the early layers with the high informative-ness (and hence recall) of the later layers. To this end, we build an inverse cascade that, going backward from the later to the earlier convolutional layers of the CNN, selects the most promising locations and refines them in a coarse-to-fine manner. The method is efficient, because i) it re-uses the same features extracted for detection, ii) it aggregates features using integral images, and iii) it avoids a dense evaluation of the proposals thanks to the use of the inverse coarse-to-fine cascade. The method is also accurate. We show that our DeepProposals outperform most of the previously proposed object proposal and action proposal approaches and, when plugged into a CNN-based object detector, produce state-of-the-art detection performance.Comment: 15 page
    • …
    corecore