2,207 research outputs found

    Sensory-Based Design & Epilepsy: Analyzing effects of design innovations on patient treatment and recovery

    Get PDF
    The patient room has more influence on neurological, physiological and biological responses than any other area within a healthcare environment. When it comes to the treatment of epilepsy, the patient room often acts as a refuge from and instigator of seizure activity, depending on patient condition or status. Inspired by this dichotomy, this research report explores specific design parameters that affect the spectrum of epileptic treatment, from instigation to recovery. At its core, this research identifies specific environmental elements that can assist in instigating an episode and recovery post seizure.Inclusions: Patients between the ages of 18 and 65 who are admitted for monitoring purposes only.Exclusions: Post-surgical procedure patients. Patients who are admitted for any type of pre-surgical procedure. Patients who are admitted less than two days.Limitations: The Epilepsy Monitoring Unit was designed as a Medical Surgical Unit

    A real time classification algorithm for EEG-based BCI driven by self-induced emotions

    Get PDF
    Background and objective: The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method: The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results: Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions: The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities

    Reconstructing Human Motion

    Get PDF
    This thesis presents methods for reconstructing human motion in a variety of applications and begins with an introduction to the general motion capture hardware and processing pipeline. Then, a data-driven method for the completion of corrupted marker-based motion capture data is presented. The approach is especially suitable for challenging cases, e.g., if complete marker sets of multiple body parts are missing over a long period of time. Using a large motion capture database and without the need for extensive preprocessing the method is able to fix missing markers across different actors and motion styles. The approach can be used for incrementally increasing prior-databases, as the underlying search technique for similar motions scales well to huge databases. The resulting clean motion database could then be used in the next application: a generic data-driven method for recognizing human full body actions from live motion capture data originating from various sources. The method queries an annotated motion capture database for similar motion segments, able to handle temporal deviations from the original motion. The approach is online-capable, works in realtime, requires virtually no preprocessing and is shown to work with a variety of feature sets extracted from input data including positional data, sparse accelerometer signals, skeletons extracted from depth sensors and even video data. Evaluation is done by comparing against a frame-based Support Vector Machine approach on a freely available motion database as well as a database containing Judo referee signal motions. In the last part, a method to indirectly reconstruct the effects of the human heart's pumping motion from video data of the face is applied in the context of epileptic seizures. These episodes usually feature interesting heart rate patterns like a significant increase at seizure start as well as seizure-type dependent drop-offs near the end. The pulse detection method is evaluated for applicability regarding seizure detection in a multitude of scenarios, ranging from videos recorded in a controlled clinical environment to patient supplied videos of seizures filmed with smartphones

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Classifying Normal and Abnormal Status Based on Video Recordings of Epileptic Patients

    Get PDF
    Based on video recordings of the movement of the patients with epilepsy, this paper proposed a human action recognition scheme to detect distinct motion patterns and to distinguish the normal status from the abnormal status of epileptic patients. The scheme first extracts local features and holistic features, which are complementary to each other. Afterwards, a support vector machine is applied to classification. Based on the experimental results, this scheme obtains a satisfactory classification result and provides a fundamental analysis towards the human-robot interaction with socially assistive robots in caring the patients with epilepsy (or other patients with brain disorders) in order to protect them from injury

    Self-Reporting Technologies for Supporting Epilepsy Treatment

    Get PDF
    Epilepsy diagnosis and treatment relies heavily on patient self-reporting for informing clinical decision-making. These self-reports are traditionally collected from handwritten patient journals and tend to be either incomplete or inaccurate. Recent mobile and wearable health tracking developments stand to dramatically impact clinical practice through supporting patient and caregiver data collection activities. However, the specific types and characteristics of the data that clinicians need for patient care are not well known. In this study, we conducted interviews, a literature review, an expert panel, and online surveys to assess the availability and quality of patient-reported data that is useful but reported as being unavailable, difficult for patients to collect, or unreliable during epilepsy diagnosis and treatment, respectively. The results highlight important yet underexplored data collection and design opportunities for supporting the diagnosis, treatment, and self-management of epilepsy and expose notable gaps between clinical data needs and current patient practices

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented
    • …
    corecore