6,102 research outputs found

    Perceptual Video Super Resolution with Enhanced Temporal Consistency

    Full text link
    With the advent of perceptual loss functions, new possibilities in super-resolution have emerged, and we currently have models that successfully generate near-photorealistic high-resolution images from their low-resolution observations. Up to now, however, such approaches have been exclusively limited to single image super-resolution. The application of perceptual loss functions on video processing still entails several challenges, mostly related to the lack of temporal consistency of the generated images, i.e., flickering artifacts. In this work, we present a novel adversarial recurrent network for video upscaling that is able to produce realistic textures in a temporally consistent way. The proposed architecture naturally leverages information from previous frames due to its recurrent architecture, i.e. the input to the generator is composed of the low-resolution image and, additionally, the warped output of the network at the previous step. Together with a video discriminator, we also propose additional loss functions to further reinforce temporal consistency in the generated sequences. The experimental validation of our algorithm shows the effectiveness of our approach which obtains images with high perceptual quality and improved temporal consistency.Comment: Major revision and improvement of the manuscript: New network architecture, new loss function and extended experiment

    EDVR: Video Restoration with Enhanced Deformable Convolutional Networks

    Full text link
    Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects: (1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable networks, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.Comment: To appear in CVPR 2019 Workshop. The winners in all four tracks in the NTIRE 2019 video restoration and enhancement challenges. Project page: https://xinntao.github.io/projects/EDVR , Code: https://github.com/xinntao/EDV

    Adapting Image Super-Resolution State-of-the-arts and Learning Multi-model Ensemble for Video Super-Resolution

    Full text link
    Recently, image super-resolution has been widely studied and achieved significant progress by leveraging the power of deep convolutional neural networks. However, there has been limited advancement in video super-resolution (VSR) due to the complex temporal patterns in videos. In this paper, we investigate how to adapt state-of-the-art methods of image super-resolution for video super-resolution. The proposed adapting method is straightforward. The information among successive frames is well exploited, while the overhead on the original image super-resolution method is negligible. Furthermore, we propose a learning-based method to ensemble the outputs from multiple super-resolution models. Our methods show superior performance and rank second in the NTIRE2019 Video Super-Resolution Challenge Track 1

    Fast Spatio-Temporal Residual Network for Video Super-Resolution

    Full text link
    Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However, straight utilizing 3D convolutions may lead to an excessively high computational complexity which restricts the depth of video SR models and thus undermine the performance. In this paper, we present a novel fast spatio-temporal residual network (FSTRN) to adopt 3D convolutions for the video SR task in order to enhance the performance while maintaining a low computational load. Specifically, we propose a fast spatio-temporal residual block (FRB) that divide each 3D filter to the product of two 3D filters, which have considerably lower dimensions. Furthermore, we design a cross-space residual learning that directly links the low-resolution space and the high-resolution space, which can greatly relieve the computational burden on the feature fusion and up-scaling parts. Extensive evaluations and comparisons on benchmark datasets validate the strengths of the proposed approach and demonstrate that the proposed network significantly outperforms the current state-of-the-art methods.Comment: To appear in CVPR 201

    Recurrent Back-Projection Network for Video Super-Resolution

    Full text link
    We proposed a novel architecture for the problem of video super-resolution. We integrate spatial and temporal contexts from continuous video frames using a recurrent encoder-decoder module, that fuses multi-frame information with the more traditional, single frame super-resolution path for the target frame. In contrast to most prior work where frames are pooled together by stacking or warping, our model, the Recurrent Back-Projection Network (RBPN) treats each context frame as a separate source of information. These sources are combined in an iterative refinement framework inspired by the idea of back-projection in multiple-image super-resolution. This is aided by explicitly representing estimated inter-frame motion with respect to the target, rather than explicitly aligning frames. We propose a new video super-resolution benchmark, allowing evaluation at a larger scale and considering videos in different motion regimes. Experimental results demonstrate that our RBPN is superior to existing methods on several datasets.Comment: To appear in CVPR201

    Learning for Video Super-Resolution through HR Optical Flow Estimation

    Full text link
    Video super-resolution (SR) aims to generate a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The generation of accurate correspondence plays a significant role in video SR. It is demonstrated by traditional video SR methods that simultaneous SR of both images and optical flows can provide accurate correspondences and better SR results. However, LR optical flows are used in existing deep learning based methods for correspondence generation. In this paper, we propose an end-to-end trainable video SR framework to super-resolve both images and optical flows. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed according to the HR optical flows. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate the SR results. Extensive experiments demonstrate that HR optical flows provide more accurate correspondences than their LR counterparts and improve both accuracy and consistency performance. Comparative results on the Vid4 and DAVIS-10 datasets show that our framework achieves the state-of-the-art performance.Comment: To appear in ACCV 201

    Image Super-Resolution via Dual-State Recurrent Networks

    Full text link
    Advances in image super-resolution (SR) have recently benefited significantly from rapid developments in deep neural networks. Inspired by these recent discoveries, we note that many state-of-the-art deep SR architectures can be reformulated as a single-state recurrent neural network (RNN) with finite unfoldings. In this paper, we explore new structures for SR based on this compact RNN view, leading us to a dual-state design, the Dual-State Recurrent Network (DSRN). Compared to its single state counterparts that operate at a fixed spatial resolution, DSRN exploits both low-resolution (LR) and high-resolution (HR) signals jointly. Recurrent signals are exchanged between these states in both directions (both LR to HR and HR to LR) via delayed feedback. Extensive quantitative and qualitative evaluations on benchmark datasets and on a recent challenge demonstrate that the proposed DSRN performs favorably against state-of-the-art algorithms in terms of both memory consumption and predictive accuracy

    NTIRE 2020 Challenge on Image and Video Deblurring

    Full text link
    Motion blur is one of the most common degradation artifacts in dynamic scene photography. This paper reviews the NTIRE 2020 Challenge on Image and Video Deblurring. In this challenge, we present the evaluation results from 3 competition tracks as well as the proposed solutions. Track 1 aims to develop single-image deblurring methods focusing on restoration quality. On Track 2, the image deblurring methods are executed on a mobile platform to find the balance of the running speed and the restoration accuracy. Track 3 targets developing video deblurring methods that exploit the temporal relation between input frames. In each competition, there were 163, 135, and 102 registered participants and in the final testing phase, 9, 4, and 7 teams competed. The winning methods demonstrate the state-ofthe-art performance on image and video deblurring tasks.Comment: To be published in CVPR 2020 Workshop (New Trends in Image Restoration and Enhancement

    Recurrent Convolutions for Causal 3D CNNs

    Full text link
    Recently, three dimensional (3D) convolutional neural networks (CNNs) have emerged as dominant methods to capture spatiotemporal representations in videos, by adding to pre-existing 2D CNNs a third, temporal dimension. Such 3D CNNs, however, are anti-causal (i.e., they exploit information from both the past and the future frames to produce feature representations, thus preventing their use in online settings), constrain the temporal reasoning horizon to the size of the temporal convolution kernel, and are not temporal resolution-preserving for video sequence-to-sequence modelling, as, for instance, in action detection. To address these serious limitations, here we present a new 3D CNN architecture for the causal/online processing of videos. Namely, we propose a novel Recurrent Convolutional Network (RCN), which relies on recurrence to capture the temporal context across frames at each network level. Our network decomposes 3D convolutions into (1) a 2D spatial convolution component, and (2) an additional hidden state 1×11\times 1 convolution, applied across time. The hidden state at any time tt is assumed to depend on the hidden state at t−1t-1 and on the current output of the spatial convolution component. As a result, the proposed network: (i) produces causal outputs, (ii) provides flexible temporal reasoning, (iii) preserves temporal resolution. Our experiments on the large-scale large Kinetics and MultiThumos datasets show that the proposed method performs comparably to anti-causal 3D CNNs, while being causal and using fewer parameters.Comment: Workshop on Large Scale Holistic Video Understanding, ICCVW, 201

    Down-Scaling with Learned Kernels in Multi-Scale Deep Neural Networks for Non-Uniform Single Image Deblurring

    Full text link
    Multi-scale approach has been used for blind image / video deblurring problems to yield excellent performance for both conventional and recent deep-learning-based state-of-the-art methods. Bicubic down-sampling is a typical choice for multi-scale approach to reduce spatial dimension after filtering with a fixed kernel. However, this fixed kernel may be sub-optimal since it may destroy important information for reliable deblurring such as strong edges. We propose convolutional neural network (CNN)-based down-scale methods for multi-scale deep-learning-based non-uniform single image deblurring. We argue that our CNN-based down-scaling effectively reduces the spatial dimension of the original image, while learned kernels with multiple channels may well-preserve necessary details for deblurring tasks. For each scale, we adopt to use RCAN (Residual Channel Attention Networks) as a backbone network to further improve performance. Our proposed method yielded state-of-the-art performance on GoPro dataset by large margin. Our proposed method was able to achieve 2.59dB higher PSNR than the current state-of-the-art method by Tao. Our proposed CNN-based down-scaling was the key factor for this excellent performance since the performance of our network without it was decreased by 1.98dB. The same networks trained with GoPro set were also evaluated on large-scale Su dataset and our proposed method yielded 1.15dB better PSNR than the Tao's method. Qualitative comparisons on Lai dataset also confirmed the superior performance of our proposed method over other state-of-the-art methods.Comment: 10 pages, 7 figures, 4 table
    • …
    corecore