3,288 research outputs found

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein

    Cloud Chaser: Real Time Deep Learning Computer Vision on Low Computing Power Devices

    Full text link
    Internet of Things(IoT) devices, mobile phones, and robotic systems are often denied the power of deep learning algorithms due to their limited computing power. However, to provide time-critical services such as emergency response, home assistance, surveillance, etc, these devices often need real-time analysis of their camera data. This paper strives to offer a viable approach to integrate high-performance deep learning-based computer vision algorithms with low-resource and low-power devices by leveraging the computing power of the cloud. By offloading the computation work to the cloud, no dedicated hardware is needed to enable deep neural networks on existing low computing power devices. A Raspberry Pi based robot, Cloud Chaser, is built to demonstrate the power of using cloud computing to perform real-time vision tasks. Furthermore, to reduce latency and improve real-time performance, compression algorithms are proposed and evaluated for streaming real-time video frames to the cloud.Comment: Accepted to The 11th International Conference on Machine Vision (ICMV 2018). Project site: https://zhengyiluo.github.io/projects/cloudchaser
    • …
    corecore