10,485 research outputs found

    Person Search in Videos with One Portrait Through Visual and Temporal Links

    Full text link
    In real-world applications, e.g. law enforcement and video retrieval, one often needs to search a certain person in long videos with just one portrait. This is much more challenging than the conventional settings for person re-identification, as the search may need to be carried out in the environments different from where the portrait was taken. In this paper, we aim to tackle this challenge and propose a novel framework, which takes into account the identity invariance along a tracklet, thus allowing person identities to be propagated via both the visual and the temporal links. We also develop a novel scheme called Progressive Propagation via Competitive Consensus, which significantly improves the reliability of the propagation process. To promote the study of person search, we construct a large-scale benchmark, which contains 127K manually annotated tracklets from 192 movies. Experiments show that our approach remarkably outperforms mainstream person re-id methods, raising the mAP from 42.16% to 62.27%.Comment: European Conference on Computer Vision (ECCV), 201

    An Overview of Cross-media Retrieval: Concepts, Methodologies, Benchmarks and Challenges

    Full text link
    Multimedia retrieval plays an indispensable role in big data utilization. Past efforts mainly focused on single-media retrieval. However, the requirements of users are highly flexible, such as retrieving the relevant audio clips with one query of image. So challenges stemming from the "media gap", which means that representations of different media types are inconsistent, have attracted increasing attention. Cross-media retrieval is designed for the scenarios where the queries and retrieval results are of different media types. As a relatively new research topic, its concepts, methodologies and benchmarks are still not clear in the literatures. To address these issues, we review more than 100 references, give an overview including the concepts, methodologies, major challenges and open issues, as well as build up the benchmarks including datasets and experimental results. Researchers can directly adopt the benchmarks to promptly evaluate their proposed methods. This will help them to focus on algorithm design, rather than the time-consuming compared methods and results. It is noted that we have constructed a new dataset XMedia, which is the first publicly available dataset with up to five media types (text, image, video, audio and 3D model). We believe this overview will attract more researchers to focus on cross-media retrieval and be helpful to them.Comment: 14 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technolog

    Triplet-Based Deep Hashing Network for Cross-Modal Retrieval

    Full text link
    Given the benefits of its low storage requirements and high retrieval efficiency, hashing has recently received increasing attention. In particular,cross-modal hashing has been widely and successfully used in multimedia similarity search applications. However, almost all existing methods employing cross-modal hashing cannot obtain powerful hash codes due to their ignoring the relative similarity between heterogeneous data that contains richer semantic information, leading to unsatisfactory retrieval performance. In this paper, we propose a triplet-based deep hashing (TDH) network for cross-modal retrieval. First, we utilize the triplet labels, which describes the relative relationships among three instances as supervision in order to capture more general semantic correlations between cross-modal instances. We then establish a loss function from the inter-modal view and the intra-modal view to boost the discriminative abilities of the hash codes. Finally, graph regularization is introduced into our proposed TDH method to preserve the original semantic similarity between hash codes in Hamming space. Experimental results show that our proposed method outperforms several state-of-the-art approaches on two popular cross-modal datasets

    Deep Exemplar-based Colorization

    Full text link
    We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as in traditional exemplar-based methods, our end-to-end colorization network learns how to select, propagate, and predict colors from the large-scale data. The approach performs robustly and generalizes well even when using reference images that are unrelated to the input grayscale image. More importantly, as opposed to other learning-based colorization methods, our network allows the user to achieve customizable results by simply feeding different references. In order to further reduce manual effort in selecting the references, the system automatically recommends references with our proposed image retrieval algorithm, which considers both semantic and luminance information. The colorization can be performed fully automatically by simply picking the top reference suggestion. Our approach is validated through a user study and favorable quantitative comparisons to the-state-of-the-art methods. Furthermore, our approach can be naturally extended to video colorization. Our code and models will be freely available for public use.Comment: To Appear in Siggraph 201

    Social Anchor-Unit Graph Regularized Tensor Completion for Large-Scale Image Retagging

    Full text link
    Image retagging aims to improve tag quality of social images by refining their original tags or assigning new high-quality tags. Recent approaches simultaneously explore visual, user and tag information to improve the performance of image retagging by constructing and exploring an image-tag-user graph. However, such methods will become computationally infeasible with the rapidly increasing number of images, tags and users. It has been proven that Anchor Graph Regularization (AGR) can significantly accelerate large-scale graph learning model by exploring only a small number of anchor points. Inspired by this, we propose a novel Social anchor-Unit GrAph Regularized Tensor Completion (SUGAR-TC) method to effectively refine the tags of social images, which is insensitive to the scale of the applied data. First, we construct an anchor-unit graph across multiple domains (e.g., image and user domains) rather than traditional anchor graph in a single domain. Second, a tensor completion based on SUGAR is implemented on the original image-tag-user tensor to refine the tags of the anchor images. Third, we efficiently assign tags to non-anchor images by leveraging the relationship between the non-anchor images and the anchor units. Experimental results on a real-world social image database well demonstrate the effectiveness of SUGAR-TC, outperforming several related methods

    Recent Advance in Content-based Image Retrieval: A Literature Survey

    Full text link
    The explosive increase and ubiquitous accessibility of visual data on the Web have led to the prosperity of research activity in image search or retrieval. With the ignorance of visual content as a ranking clue, methods with text search techniques for visual retrieval may suffer inconsistency between the text words and visual content. Content-based image retrieval (CBIR), which makes use of the representation of visual content to identify relevant images, has attracted sustained attention in recent two decades. Such a problem is challenging due to the intention gap and the semantic gap problems. Numerous techniques have been developed for content-based image retrieval in the last decade. The purpose of this paper is to categorize and evaluate those algorithms proposed during the period of 2003 to 2016. We conclude with several promising directions for future research.Comment: 22 page

    RANet: Ranking Attention Network for Fast Video Object Segmentation

    Full text link
    Despite online learning (OL) techniques have boosted the performance of semi-supervised video object segmentation (VOS) methods, the huge time costs of OL greatly restrict their practicality. Matching based and propagation based methods run at a faster speed by avoiding OL techniques. However, they are limited by sub-optimal accuracy, due to mismatching and drifting problems. In this paper, we develop a real-time yet very accurate Ranking Attention Network (RANet) for VOS. Specifically, to integrate the insights of matching based and propagation based methods, we employ an encoder-decoder framework to learn pixel-level similarity and segmentation in an end-to-end manner. To better utilize the similarity maps, we propose a novel ranking attention module, which automatically ranks and selects these maps for fine-grained VOS performance. Experiments on DAVIS-16 and DAVIS-17 datasets show that our RANet achieves the best speed-accuracy trade-off, e.g., with 33 milliseconds per frame and J&F=85.5% on DAVIS-16. With OL, our RANet reaches J&F=87.1% on DAVIS-16, exceeding state-of-the-art VOS methods. The code can be found at https://github.com/Storife/RANet.Comment: Accepted by ICCV 2019. 10 pages, 7 figures, 6 tables. The supplementary file can be found at https://csjunxu.github.io/paper/2019ICCV/RANet_supp.pdf ; Code is available at https://github.com/Storife/RANe

    SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

    Full text link
    Hashing methods have been widely used for efficient similarity retrieval on large scale image database. Traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing methods have shown better performance because the deep architectures generate more discriminative feature representations. However, these deep hashing methods are mainly designed for supervised scenarios, which only exploit the semantic similarity information, but ignore the underlying data structures. In this paper, we propose the semi-supervised deep hashing (SSDH) approach, to perform more effective hash function learning by simultaneously preserving semantic similarity and underlying data structures. The main contributions are as follows: (1) We propose a semi-supervised loss to jointly minimize the empirical error on labeled data, as well as the embedding error on both labeled and unlabeled data, which can preserve the semantic similarity and capture the meaningful neighbors on the underlying data structures for effective hashing. (2) A semi-supervised deep hashing network is designed to extensively exploit both labeled and unlabeled data, in which we propose an online graph construction method to benefit from the evolving deep features during training to better capture semantic neighbors. To the best of our knowledge, the proposed deep network is the first deep hashing method that can perform hash code learning and feature learning simultaneously in a semi-supervised fashion. Experimental results on 5 widely-used datasets show that our proposed approach outperforms the state-of-the-art hashing methods.Comment: 14 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technolog

    Rapid Probabilistic Interest Learning from Domain-Specific Pairwise Image Comparisons

    Full text link
    A great deal of work aims to discover large general purpose models of image interest or memorability for visual search and information retrieval. This paper argues that image interest is often domain and user specific, and that efficient mechanisms for learning about this domain-specific image interest as quickly as possible, while limiting the amount of data-labelling required, are often more useful to end-users. This work uses pairwise image comparisons to reduce the labelling burden on these users, and introduces an image interest estimation approach that performs similarly to recent data hungry deep learning approaches trained using pairwise ranking losses. Here, we use a Gaussian process model to interpolate image interest inferred using a Bayesian ranking approach over image features extracted using a pre-trained convolutional neural network. Results show that fitting a Gaussian process in high-dimensional image feature space is not only computationally feasible, but also effective across a broad range of domains. The proposed probabilistic interest estimation approach produces image interests paired with uncertainties that can be used to identify images for which additional labelling is required and measure inference convergence, allowing for sample efficient active model training. Importantly, the probabilistic formulation allows for effective visual search and information retrieval when limited labelling data is available

    An Uncertainty-Aware Approach for Exploratory Microblog Retrieval

    Full text link
    Although there has been a great deal of interest in analyzing customer opinions and breaking news in microblogs, progress has been hampered by the lack of an effective mechanism to discover and retrieve data of interest from microblogs. To address this problem, we have developed an uncertainty-aware visual analytics approach to retrieve salient posts, users, and hashtags. We extend an existing ranking technique to compute a multifaceted retrieval result: the mutual reinforcement rank of a graph node, the uncertainty of each rank, and the propagation of uncertainty among different graph nodes. To illustrate the three facets, we have also designed a composite visualization with three visual components: a graph visualization, an uncertainty glyph, and a flow map. The graph visualization with glyphs, the flow map, and the uncertainty analysis together enable analysts to effectively find the most uncertain results and interactively refine them. We have applied our approach to several Twitter datasets. Qualitative evaluation and two real-world case studies demonstrate the promise of our approach for retrieving high-quality microblog data
    corecore