1,051 research outputs found

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Multigranularity Representations for Human Inter-Actions: Pose, Motion and Intention

    Get PDF
    Tracking people and their body pose in videos is a central problem in computer vision. Standard tracking representations reason about temporal coherence of detected people and body parts. They have difficulty tracking targets under partial occlusions or rare body poses, where detectors often fail, since the number of training examples is often too small to deal with the exponential variability of such configurations. We propose tracking representations that track and segment people and their body pose in videos by exploiting information at multiple detection and segmentation granularities when available, whole body, parts or point trajectories. Detections and motion estimates provide contradictory information in case of false alarm detections or leaking motion affinities. We consolidate contradictory information via graph steering, an algorithm for simultaneous detection and co-clustering in a two-granularity graph of motion trajectories and detections, that corrects motion leakage between correctly detected objects, while being robust to false alarms or spatially inaccurate detections. We first present a motion segmentation framework that exploits long range motion of point trajectories and large spatial support of image regions. We show resulting video segments adapt to targets under partial occlusions and deformations. Second, we augment motion-based representations with object detection for dealing with motion leakage. We demonstrate how to combine dense optical flow trajectory affinities with repulsions from confident detections to reach a global consensus of detection and tracking in crowded scenes. Third, we study human motion and pose estimation. We segment hard to detect, fast moving body limbs from their surrounding clutter and match them against pose exemplars to detect body pose under fast motion. We employ on-the-fly human body kinematics to improve tracking of body joints under wide deformations. We use motion segmentability of body parts for re-ranking a set of body joint candidate trajectories and jointly infer multi-frame body pose and video segmentation. We show empirically that such multi-granularity tracking representation is worthwhile, obtaining significantly more accurate multi-object tracking and detailed body pose estimation in popular datasets

    Video Desnowing and Deraining via Saliency and Dual Adaptive Spatiotemporal Filtering

    Get PDF
    Outdoor vision sensing systems often struggle with poor weather conditions, such as snow and rain, which poses a great challenge to existing video desnowing and deraining methods. In this paper, we propose a novel video desnowing and deraining model that utilizes the salience information of moving objects to address this problem. First, we remove the snow and rain from the video by low-rank tensor decomposition, which makes full use of the spatial location information and the correlation between the three channels of the color video. Second, because existing algorithms often regard sparse snowflakes and rain streaks as moving objects, this paper injects salience information into moving object detection, which reduces the false alarms and missed alarms of moving objects. At the same time, feature point matching is used to mine the redundant information of moving objects in continuous frames, and a dual adaptive minimum filtering algorithm in the spatiotemporal domain is proposed by us to remove snow and rain in front of moving objects. Both qualitative and quantitative experimental results show that the proposed algorithm is more competitive than other state-of-the-art snow and rain removal methods

    DR(eye)VE: a Dataset for Attention-Based Tasks with Applications to Autonomous and Assisted Driving

    Get PDF
    Autonomous and assisted driving are undoubtedly hot topics in computer vision. However, the driving task is extremely complex and a deep understanding of drivers' behavior is still lacking. Several researchers are now investigating the attention mechanism in order to define computational models for detecting salient and interesting objects in the scene. Nevertheless, most of these models only refer to bottom up visual saliency and are focused on still images. Instead, during the driving experience the temporal nature and peculiarity of the task influence the attention mechanisms, leading to the conclusion that real life driving data is mandatory. In this paper we propose a novel and publicly available dataset acquired during actual driving. Our dataset, composed by more than 500,000 frames, contains drivers' gaze fixations and their temporal integration providing task-specific saliency maps. Geo-referenced locations, driving speed and course complete the set of released data. To the best of our knowledge, this is the first publicly available dataset of this kind and can foster new discussions on better understanding, exploiting and reproducing the driver's attention process in the autonomous and assisted cars of future generations
    • …
    corecore