15 research outputs found

    On-line video abstraction

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, abril de 201

    The IMMED Project: Wearable Video Monitoring of People with Age Dementia

    Get PDF
    International audienceIn this paper, we describe a new application for multimedia indexing, using a system that monitors the instrumental activities of daily living to assess the cognitive decline caused by dementia. The system is composed of a wearable camera device designed to capture audio and video data of the instrumental activities of a patient, which is leveraged with multimedia indexing techniques in order to allow medical specialists to analyze several hour long observation shots efficiently

    Video Summarization Using Deep Neural Networks: A Survey

    Get PDF
    Video summarization technologies aim to create a concise and complete synopsis by selecting the most informative parts of the video content. Several approaches have been developed over the last couple of decades and the current state of the art is represented by methods that rely on modern deep neural network architectures. This work focuses on the recent advances in the area and provides a comprehensive survey of the existing deep-learning-based methods for generic video summarization. After presenting the motivation behind the development of technologies for video summarization, we formulate the video summarization task and discuss the main characteristics of a typical deep-learning-based analysis pipeline. Then, we suggest a taxonomy of the existing algorithms and provide a systematic review of the relevant literature that shows the evolution of the deep-learning-based video summarization technologies and leads to suggestions for future developments. We then report on protocols for the objective evaluation of video summarization algorithms and we compare the performance of several deep-learning-based approaches. Based on the outcomes of these comparisons, as well as some documented considerations about the suitability of evaluation protocols, we indicate potential future research directions.Comment: Journal paper; Under revie

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Video Sequence Alignment

    Get PDF
    The task of aligning multiple audio visual sequences with similar contents needs careful synchronisation in both spatial and temporal domains. It is a challenging task due to a broad range of contents variations, background clutter, occlusions, and other factors. This thesis is concerned with aligning video contents by characterising the spatial and temporal information embedded in the high-dimensional space. To that end a three- stage framework is developed, involving space-time representation of video clips with local linear coding, followed by their alignment in the manifold embedded space. The first two stages present a video representation techniques based on local feature extraction and linear coding methods. Firstly, the scale invariant feature transform (SIFT) is extended to extract interest points not only from the spatial plane but also from the planes along the space-time axis. Locality constrained coding is then incorporated to project each descriptor into a local coordinate system produced by a pooling technique. Human action classification benchmarks are adopted to evaluate these two stages, comparing their performance against existing techniques. The results shows that space-time extension of SIFT with a linear coding scheme outperforms most of the state-of-the-art approaches on the action classification task owing to its ability to represent complex events in video sequences. The final stage presents a manifold learning algorithm with spatio-temporal constraints to embed a video clip in a lower dimensional space while preserving the intrinsic geometry of the data. The similarities observed between frame sequences are captured by defining two types of correlation graphs: an intra-correlation graph within a single video sequence and an inter-correlation graph between two sequences. A video retrieval and ranking tasks are designed to evaluate the manifold learning stage. The experimental outcome shows that the approach outperforms the conventional techniques in defining similar video contents and capture the spatio-temporal correlations between them

    Voice Modeling Methods for Automatic Speaker Recognition

    Get PDF
    Building a voice model means to capture the characteristics of a speaker®s voice in a data structure. This data structure is then used by a computer for further processing, such as comparison with other voices. Voice modeling is a vital step in the process of automatic speaker recognition that itself is the foundation of several applied technologies: (a) biometric authentication, (b) speech recognition and (c) multimedia indexing. Several challenges arise in the context of automatic speaker recognition. First, there is the problem of data shortage, i.e., the unavailability of sufficiently long utterances for speaker recognition. It stems from the fact that the speech signal conveys different aspects of the sound in a single, one-dimensional time series: linguistic (what is said?), prosodic (how is it said?), individual (who said it?), locational (where is the speaker?) and emotional features of the speech sound itself (to name a few) are contained in the speech signal, as well as acoustic background information. To analyze a specific aspect of the sound regardless of the other aspects, analysis methods have to be applied to a specific time scale (length) of the signal in which this aspect stands out of the rest. For example, linguistic information (i.e., which phone or syllable has been uttered?) is found in very short time spans of only milliseconds of length. On the contrary, speakerspecific information emerges the better the longer the analyzed sound is. Long utterances, however, are not always available for analysis. Second, the speech signal is easily corrupted by background sound sources (noise, such as music or sound effects). Their characteristics tend to dominate a voice model, if present, such that model comparison might then be mainly due to background features instead of speaker characteristics. Current automatic speaker recognition works well under relatively constrained circumstances, such as studio recordings, or when prior knowledge on the number and identity of occurring speakers is available. Under more adverse conditions, such as in feature films or amateur material on the web, the achieved speaker recognition scores drop below a rate that is acceptable for an end user or for further processing. For example, the typical speaker turn duration of only one second and the sound effect background in cinematic movies render most current automatic analysis techniques useless. In this thesis, methods for voice modeling that are robust with respect to short utterances and background noise are presented. The aim is to facilitate movie analysis with respect to occurring speakers. Therefore, algorithmic improvements are suggested that (a) improve the modeling of very short utterances, (b) facilitate voice model building even in the case of severe background noise and (c) allow for efficient voice model comparison to support the indexing of large multimedia archives. The proposed methods improve the state of the art in terms of recognition rate and computational efficiency. Going beyond selective algorithmic improvements, subsequent chapters also investigate the question of what is lacking in principle in current voice modeling methods. By reporting on a study with human probands, it is shown that the exclusion of time coherence information from a voice model induces an artificial upper bound on the recognition accuracy of automatic analysis methods. A proof-of-concept implementation confirms the usefulness of exploiting this kind of information by halving the error rate. This result questions the general speaker modeling paradigm of the last two decades and presents a promising new way. The approach taken to arrive at the previous results is based on a novel methodology of algorithm design and development called “eidetic design". It uses a human-in-the-loop technique that analyses existing algorithms in terms of their abstract intermediate results. The aim is to detect flaws or failures in them intuitively and to suggest solutions. The intermediate results often consist of large matrices of numbers whose meaning is not clear to a human observer. Therefore, the core of the approach is to transform them to a suitable domain of perception (such as, e.g., the auditory domain of speech sounds in case of speech feature vectors) where their content, meaning and flaws are intuitively clear to the human designer. This methodology is formalized, and the corresponding workflow is explicated by several use cases. Finally, the use of the proposed methods in video analysis and retrieval are presented. This shows the applicability of the developed methods and the companying software library sclib by means of improved results using a multimodal analysis approach. The sclib®s source code is available to the public upon request to the author. A summary of the contributions together with an outlook to short- and long-term future work concludes this thesis

    A Survey on Video-based Graphics and Video Visualization

    Get PDF

    Video Summarization Using Unsupervised Deep Learning

    Get PDF
    In this thesis, we address the task of video summarization using unsupervised deep-learning architectures. Video summarization aims to generate a short summary by selecting the most informative and important frames (key-frames) or fragments (key-fragments) of the full-length video, and presenting them in temporally-ordered fashion. Our objective is to overcome observed weaknesses of existing video summarization approaches that utilize RNNs for modeling the temporal dependence of frames, related to: i) the small influence of the estimated frame-level importance scores in the created video summary, ii) the insufficiency of RNNs to model long-range frames' dependence, and iii) the small amount of parallelizable operations during the training of RNNs. To address the first weakness, we propose a new unsupervised network architecture, called AC-SUM-GAN, which formulates the selection of important video fragments as a sequence generation task and learns this task by embedding an Actor-Critic model in a Generative Adversarial Network. The feedback of a trainable Discriminator is used as a reward by the Actor-Critic model in order to explore a space of actions and learn a value function (Critic) and a policy (Actor) for video fragment selection. To tackle the remaining weaknesses, we investigate the use of attention mechanisms for video summarization and propose a new supervised network architecture, called PGL-SUM, that combines global and local multi-head attention mechanisms which take into account the temporal position of the video frames, in order to discover different modelings of the frames' dependencies at different levels of granularity. Based on the acquired experience, we then propose a new unsupervised network architecture, called CA-SUM, which estimates the frames' importance using a novel concentrated attention mechanism that focuses on non-overlapping blocks in the main diagonal of the attention matrix and takes into account the attentive uniqueness and diversity of the associated frames of the video. All the proposed architectures have been extensively evaluated on the most commonly-used benchmark datasets, demonstrating their competitiveness against other approaches and documenting the contribution of our proposals on advancing the current state-of-the-art on video summarization. Finally, we make a first attempt on producing explanations for the video summarization results. Inspired by relevant works in the Natural Language Processing domain, we propose an attention-based method for explainable video summarization and we evaluate the performance of various explanation signals using our CA-SUM architecture and two benchmark datasets for video summarization. The experimental results indicate the advanced performance of explanation signals formed using the inherent attention weights, and demonstrate the ability of the proposed method to explain the video summarization results using clues about the focus of the attention mechanism
    corecore