269 research outputs found

    Preliminary study and design of the avionics system for an eVTOL aircraft.

    Get PDF
    The project consists of the study, creation, implementation, and development of the avionics system of an electric Vertical Take-Off and Landing (eVTOL) airplane for an ongoing project from the company ONAEROSPACE. The plane is intended to be for 7 passengers and 1 pilot, with a maximum range of 1000+ km. The fuselage will be formed of carbon fiber composite to reduce weight and it will use electric motors powered by batteries. The avionics system will provide the aircraft with communication and navigation systems, an autonomous Take-Off (T/O) and landing system, as well as the development of cockpit management systems. This document is divided into two parts. The first part begins with the study of all the necessary tools for communication and navigation systems. That means all compulsory antennas and sensors to obtain information about the surroundings (weather, obstacles, other planes¿). The intern communication network to send data from these sensors and antennas to main flight management systems is also studied in this first part. The second part of the project is dedicated to cabin cockpit systems and the study for the future development of autonomous systems. The cabin will have a full-glass cockpit, with touchable screens and an intelligent voice assistant. It will be very ergonomic and simple, with a lot of space in the cabin. In order to have an idea of the cost of the implementation of all the systems for the aircraft, a weight and cost estimation analysis are done at the end of each section. The last part of the project consists of the study of the design of a virtual intelligent voice assistant and the implementation of autonomous systems. Nowadays, the virtual intelligent voice assistant is an artificial intelligence system that works as a pilot monitoring system which assists the pilot in order to decrease the pilot¿s workload. The future idea is that the pilot could tell commands to the voice assistant and do nothing with the hands, just control that everything works correctly. Regarding the autonomous system, the conclusion is that with the existent technology is not possible today. Nevertheless, in the future, when fully autonomous aircraft are possible, the idea is that although being fully autonomous, the pilot can take the control of the aircraft at any moment.OutgoingObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenible

    Using 5G to Bring More than just Bits to Homes

    Get PDF
    Future drone delivery infrastructure and service for distributing goods to inner city and rural areas, by collaborating with the already existing transportation system, has become an important function in the semi-/full-automation process of home deliveries. This has been exacerbated by the current (and possible future) Covid-19 pandemic. This paper presents a new paradigm for a 5G enabled drone delivery system based on ground-aerial integrated mobilities called TWIN that provide a high-quality communication system for increased drone fleet service capacity. We depict the 5G architecture that supports the dual mobilities and emphasize the strategies to ensure reliable, low latency radio link, high accuracy drone positioning together with location management. The increased link level availability coupled with high accuracy location management, allows for a series of new network applications and support the fast creation of drone delivery services. We envision that logistic services on the TWIN concept will have a high societal and economic impact for both urban and rural areas.acceptedVersionPeer reviewe

    Exploration of smart infrastructure for drivers of autonomous vehicles

    Get PDF
    The connection between vehicles and infrastructure is an integral part of providing autonomous vehicles information about the environment. Autonomous vehicles need to be safe and users need to trust their driving decision. When smart infrastructure information is integrated into the vehicle, the driver needs to be informed in an understandable manner what the smart infrastructure detected. Nevertheless, interactions that benefit from smart infrastructure have not been the focus of research, leading to knowledge gaps in the integration of smart infrastructure information in the vehicle. For example, it is unclear, how the information from two complex systems can be presented, and if decisions are made, how these can be explained. Enriching the data of vehicles with information from the infrastructure opens unexplored opportunities. Smart infrastructure provides vehicles with information to predict traffic flow and traffic events. Additionally, it has information about traffic events in several kilometers distance and thus enables a look ahead on a traffic situation, which is not in the immediate view of drivers. We argue that this smart infrastructure information can be used to enhance the driving experience. To achieve this, we explore designing novel interactions, providing warnings and visualizations about information that is out of the view of the driver, and offering explanations for the cause of changed driving behavior of the vehicle. This thesis focuses on exploring the possibilities of smart infrastructure information with a focus on the highway. The first part establishes a design space for 3D in-car augmented reality applications that profit from smart infrastructure information. Through the input of two focus groups and a literature review, use cases are investigated that can be introduced in the vehicle's interaction interface which, among others, rely on environment information. From those, a design space that can be used to design novel in-car applications is derived. The second part explores out-of-view visualizations before and during take over requests to increase situation awareness. With three studies, different visualizations for out-of-view information are implemented in 2D, stereoscopic 3D, and augmented reality. Our results show that visualizations improve the situation awareness about critical events in larger distances during take over request situations. In the third part, explanations are designed for situations in which the vehicle drives unexpectedly due to unknown reasons. Since smart infrastructure could provide connected vehicles with out-of-view or cloud information, the driving maneuver of the vehicle might remain unclear to the driver. Therefore, we explore the needs of drivers in those situations and derive design recommendations for an interface which displays the cause for the unexpected driving behavior. This thesis answers questions about the integration of environment information in vehicles'. Three important aspects are explored, which are essential to consider when implementing use cases with smart infrastructure in mind. It enables to design novel interactions, provides insights on how out-of-view visualizations can improve the drivers' situation awareness and explores unexpected driving situations and the design of explanations for them. Overall, we have shown how infrastructure and connected vehicle information can be introduced in vehicles' user interface and how new technology such as augmented reality glasses can be used to improve the driver's perception of the environment.Autonome Fahrzeuge werden immer mehr in den alltäglichen Verkehr integriert. Die Verbindung von Fahrzeugen mit der Infrastruktur ist ein wesentlicher Bestandteil der Bereitstellung von Umgebungsinformationen in autonome Fahrzeugen. Die Erweiterung der Fahrzeugdaten mit Informationen der Infrastruktur eröffnet ungeahnte Möglichkeiten. Intelligente Infrastruktur übermittelt verbundenen Fahrzeugen Informationen über den prädizierten Verkehrsfluss und Verkehrsereignisse. Zusätzlich können Verkehrsgeschehen in mehreren Kilometern Entfernung übermittelt werden, wodurch ein Vorausblick auf einen Bereich ermöglicht wird, der für den Fahrer nicht unmittelbar sichtbar ist. Mit dieser Dissertation wird gezeigt, dass Informationen der intelligenten Infrastruktur benutzt werden können, um das Fahrerlebnis zu verbessern. Dies kann erreicht werden, indem innovative Interaktionen gestaltet werden, Warnungen und Visualisierungen über Geschehnisse außerhalb des Sichtfelds des Fahrers vermittelt werden und indem Erklärungen über den Grund eines veränderten Fahrzeugverhaltens untersucht werden. Interaktionen, welche von intelligenter Infrastruktur profitieren, waren jedoch bisher nicht im Fokus der Forschung. Dies führt zu Wissenslücken bezüglich der Integration von intelligenter Infrastruktur in das Fahrzeug. Diese Dissertation exploriert die Möglichkeiten intelligenter Infrastruktur, mit einem Fokus auf die Autobahn. Der erste Teil erstellt einen Design Space für Anwendungen von augmentierter Realität (AR) in 3D innerhalb des Autos, die unter anderem von Informationen intelligenter Infrastruktur profitieren. Durch das Ergebnis mehrerer Studien werden Anwendungsfälle in einem Katalog gesammelt, welche in die Interaktionsschnittstelle des Autos einfließen können. Diese Anwendungsfälle bauen unter anderem auf Umgebungsinformationen. Aufgrund dieser Anwendungen wird der Design Space entwickelt, mit Hilfe dessen neuartige Anwendungen für den Fahrzeuginnenraum entwickelt werden können. Der zweite Teil exploriert Visualisierungen für Verkehrssituationen, die außerhalb des Sichtfelds des Fahrers sind. Es wird untersucht, ob durch diese Visualisierungen der Fahrer besser auf ein potentielles Übernahmeszenario vorbereitet wird. Durch mehrere Studien wurden verschiedene Visualisierungen in 2D, stereoskopisches 3D und augmentierter Realität implementiert, die Szenen außerhalb des Sichtfelds des Fahrers darstellen. Diese Visualisierungen verbessern das Situationsbewusstsein über kritische Szenarien in einiger Entfernung während eines Übernahmeszenarios. Im dritten Teil werden Erklärungen für Situationen gestaltet, in welchen das Fahrzeug ein unerwartetes Fahrmanöver ausführt. Der Grund des Fahrmanövers ist dem Fahrer dabei unbekannt. Mit intelligenter Infrastruktur verbundene Fahrzeuge erhalten Informationen, die außerhalb des Sichtfelds des Fahrers liegen oder von der Cloud bereit gestellt werden. Dadurch könnte der Grund für das unerwartete Fahrverhalten unklar für den Fahrer sein. Daher werden die Bedürfnisse des Fahrers in diesen Situationen erforscht und Empfehlungen für die Gestaltung einer Schnittstelle, die Erklärungen für das unerwartete Fahrverhalten zur Verfügung stellt, abgeleitet. Zusammenfassend wird gezeigt wie Daten der Infrastruktur und Informationen von verbundenen Fahrzeugen in die Nutzerschnittstelle des Fahrzeugs implementiert werden können. Zudem wird aufgezeigt, wie innovative Technologien wie AR Brillen, die Wahrnehmung der Umgebung des Fahrers verbessern können. Durch diese Dissertation werden Fragen über Anwendungsfälle für die Integration von Umgebungsinformationen in Fahrzeugen beantwortet. Drei wichtige Themengebiete wurden untersucht, welche bei der Betrachtung von Anwendungsfällen der intelligenten Infrastruktur essentiell sind. Durch diese Arbeit wird die Gestaltung innovativer Interaktionen ermöglicht, Einblicke in Visualisierungen von Informationen außerhalb des Sichtfelds des Fahrers gegeben und es wird untersucht, wie Erklärungen für unerwartete Fahrsituationen gestaltet werden können

    Augmenting CCAM Infrastructure for Creating Smart Roads and Enabling Autonomous Driving

    Get PDF
    Autonomous vehicles and smart roads are not new concepts and the undergoing development to empower the vehicles for higher levels of automation has achieved initial milestones. However, the transportation industry and relevant research communities still require making considerable efforts to create smart and intelligent roads for autonomous driving. To achieve the results of such efforts, the CCAM infrastructure is a game changer and plays a key role in achieving higher levels of autonomous driving. In this paper, we present a smart infrastructure and autonomous driving capabilities enhanced by CCAM infrastructure. Meaning thereby, we lay down the technical requirements of the CCAM infrastructure: identify the right set of the sensory infrastructure, their interfacing, integration platform, and necessary communication interfaces to be interconnected with upstream and downstream solution components. Then, we parameterize the road and network infrastructures (and automated vehicles) to be advanced and evaluated during the research work, under the very distinct scenarios and conditions. For validation, we demonstrate the machine learning algorithms in mobility applications such as traffic flow and mobile communication demands. Consequently, we train multiple linear regression models and achieve accuracy of over 94% for predicting aforementioned demands on a daily basis. This research therefore equips the readers with relevant technical information required for enhancing CCAM infrastructure. It also encourages and guides the relevant research communities to implement the CCAM infrastructure towards creating smart and intelligent roads for autonomous driving

    Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and Opportunities

    Full text link
    In recent years, ubiquitous semantic Metaverse has been studied to revolutionize immersive cyber-virtual experiences for augmented reality (AR) and virtual reality (VR) users, which leverages advanced semantic understanding and representation to enable seamless, context-aware interactions within mixed-reality environments. This survey focuses on the intelligence and spatio-temporal characteristics of four fundamental system components in ubiquitous semantic Metaverse, i.e., artificial intelligence (AI), spatio-temporal data representation (STDR), semantic Internet of Things (SIoT), and semantic-enhanced digital twin (SDT). We thoroughly survey the representative techniques of the four fundamental system components that enable intelligent, personalized, and context-aware interactions with typical use cases of the ubiquitous semantic Metaverse, such as remote education, work and collaboration, entertainment and socialization, healthcare, and e-commerce marketing. Furthermore, we outline the opportunities for constructing the future ubiquitous semantic Metaverse, including scalability and interoperability, privacy and security, performance measurement and standardization, as well as ethical considerations and responsible AI. Addressing those challenges is important for creating a robust, secure, and ethically sound system environment that offers engaging immersive experiences for the users and AR/VR applications.Comment: 18 pages, 7 figures, 3 table

    Analysis of wireless connectivity applications at airport surface

    Get PDF
    The main objective of the current work is to carry out the research to explore the potential wireless communication technologies that can be used during a flight operation at the airport surface for current and potential data applications in future. An important part of this work is the analysis of these services and applications from the perspective of understanding the stakeholders and communication means involved. Different communication services including both critical and non-critical ones are analyzed for aircrafts, airlines, and airport connectivity covering flight stages from landing at the airport to taking off from the airport. We are also proposing the ways of more effective use of communication means including the proposed measures for throughput improvement in order to better meet the needs of the airport stakeholder

    The Effects of Remotely Piloted Aircraft Command and Control Latency during Within-Visual-Range Air-To-Air Combat

    Get PDF
    The type of military missions conducted by remotely piloted aircraft continues to expand into all facets of operations including air-to-air combat. While future within-visual-range air-to-air combat will be piloted by artificial intelligence, remotely piloted aircraft will likely first see combat. The purpose of this study was to quantify the effect of latency on one-versus-one, within-visual-range air-to-air combat success during both high-speed and low-speed engagements. The research employed a repeated-measures experimental design to test the various hypothesis associated with command and control latency. Participants experienced in air-to-air combat were subjected to various latency inputs during one-versus-one simulated combat using a virtual-reality simulator and scored on the combat success of each engagement. This research was pursued in coordination with the Air Force Research Laboratory and the United States Air Force Warfare Center. The dependent variable, combat score, was derived through post-simulation analysis and scored for each engagement. The independent variables included the input control latency (time) and the starting velocity of the engagement (high-speed and low-speed). The input latency included six different delays (0.0, 0.25, 0.50, 0.75, 1.0, and 1.25 seconds) between pilot input and simulator response. Each latency was repeated for a high-speed and low-speed engagement. A two-way repeated-measures analysis of variance was used to determine whether there was a statistically significant difference in means between the various treatments on combat success and determine if there was an interaction between latency and fight speed. The results indicated that there was a statistically significant difference between combat success at the various latency levels and engagement velocity. There was a significant interaction effect between latency and engagement speed, indicating that the outcome was dependent on both variables. As the latency increased, a significant decrease in combat success occurred, decreasing from .539 with no latency, to .133 at 1.250 seconds of latency during high-speed combat. During low-speed combat, the combat success decreased from .659 with no latency, to .189 at 1.250 seconds of latency. The largest incremental decrease occurred between 1.00 and 1.25 seconds of latency for high-speed and between 0.75 and 1.00 at low-speed. The overall decrease in combat success during a high-speed engagement was less than during the low-speed engagements. The results of this study quantified the decrease in combat success during within-visual range air-to-air combat and concluded that, when latency is encountered, a high-speed (two-circle) engagement is desired to minimize adverse latency effects. The research informs aircraft and communication designers of the decrease in expected combat success caused by latency. This simulation configuration can be utilized for future research leading to methods and tactics to decrease the effects of latency
    corecore