13,633 research outputs found

    Multichannel Attention Network for Analyzing Visual Behavior in Public Speaking

    Get PDF
    Public speaking is an important aspect of human communication and interaction. The majority of computational work on public speaking concentrates on analyzing the spoken content, and the verbal behavior of the speakers. While the success of public speaking largely depends on the content of the talk, and the verbal behavior, non-verbal (visual) cues, such as gestures and physical appearance also play a significant role. This paper investigates the importance of visual cues by estimating their contribution towards predicting the popularity of a public lecture. For this purpose, we constructed a large database of more than 18001800 TED talk videos. As a measure of popularity of the TED talks, we leverage the corresponding (online) viewers' ratings from YouTube. Visual cues related to facial and physical appearance, facial expressions, and pose variations are extracted from the video frames using convolutional neural network (CNN) models. Thereafter, an attention-based long short-term memory (LSTM) network is proposed to predict the video popularity from the sequence of visual features. The proposed network achieves state-of-the-art prediction accuracy indicating that visual cues alone contain highly predictive information about the popularity of a talk. Furthermore, our network learns a human-like attention mechanism, which is particularly useful for interpretability, i.e. how attention varies with time, and across different visual cues by indicating their relative importance

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Fast Matrix Factorization for Online Recommendation with Implicit Feedback

    Full text link
    This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.Comment: 10 pages, 8 figure
    • …
    corecore