4 research outputs found

    3D reconstruction and motion estimation using forward looking sonar

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are increasingly used in different domains including archaeology, oil and gas industry, coral reef monitoring, harbour鈥檚 security, and mine countermeasure missions. As electromagnetic signals do not penetrate underwater environment, GPS signals cannot be used for AUV navigation, and optical cameras have very short range underwater which limits their use in most underwater environments. Motion estimation for AUVs is a critical requirement for successful vehicle recovery and meaningful data collection. Classical inertial sensors, usually used for AUV motion estimation, suffer from large drift error. On the other hand, accurate inertial sensors are very expensive which limits their deployment to costly AUVs. Furthermore, acoustic positioning systems (APS) used for AUV navigation require costly installation and calibration. Moreover, they have poor performance in terms of the inferred resolution. Underwater 3D imaging is another challenge in AUV industry as 3D information is increasingly demanded to accomplish different AUV missions. Different systems have been proposed for underwater 3D imaging, such as planar-array sonar and T-configured 3D sonar. While the former features good resolution in general, it is very expensive and requires huge computational power, the later is cheaper implementation but requires long time for full 3D scan even in short ranges. In this thesis, we aim to tackle AUV motion estimation and underwater 3D imaging by proposing relatively affordable methodologies and study different parameters affecting their performance. We introduce a new motion estimation framework for AUVs which relies on the successive acoustic images to infer AUV ego-motion. Also, we propose an Acoustic Stereo Imaging (ASI) system for underwater 3D reconstruction based on forward looking sonars; the proposed system features cheaper implementation than planar array sonars and solves the delay problem in T configured 3D sonars

    Super-resolution:A comprehensive survey

    Get PDF

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Menci贸n Internacional en el t铆tulo de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los veh铆culos a茅reos no tripulados (UAV) en sus versiones de peque帽o tama帽o conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador com煤n. La percepci贸n del entorno se mide mediante sensores que tienen error, los modelos que interpretan la informaci贸n y/o definen comportamientos son aproximaciones del mundo y por consiguiente tambi茅n presentan error. Explicar el error permite extender los l铆mites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnolog铆as embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, as铆 como de las nuevas tecnolog铆as que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situaci贸n son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores informaci贸n necesaria para cumplir con una misi贸n deseada. Para ello se componen de una ley de control de guiado que reacciona a la informaci贸n percibida por los sistemas de percepci贸n y navegaci贸n. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparici贸n en los a帽os 60, ha sido y contin煤a siendo un gran aliado para los ingenieros. Los filtros de Kalman son el coraz贸n de los sistemas de fusi贸n de informaci贸n, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hip贸tesis para modelar el mundo. Entre las hip贸tesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribuci贸n para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisi贸n basado en visi贸n por computador. Despu茅s se plantean problemas de estimaci贸n y filtrado desde la aproximaci贸n del aprendizaje profundo. Por 煤ltimo, se estudian los conceptos de clasificaci贸n con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagaci贸n del error de un sistema de aterrizaje de precisi贸n basado en visi贸n artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en 煤ltima instancia reducir el error. Los siguientes dos estudios abordan el problema de estimaci贸n y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una funci贸n que minimizar mediante aprendizaje. El 煤ltimo caso del compendio aborda un problema de clasificaci贸n de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresi贸n y clasificaci贸n, donde se plantea el error como una funci贸n de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnolog铆a Inform谩tica por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jes煤s.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Mart铆nez Cav

    Video Mosaicing of Planer Scenes using Extended Kalman Filter

    No full text
    In this work, the large planar scene is reconstructed from small images. Small images can be consecutive video frames or sequence of photographs. In the problem, called mosaicing, instead of using widely used optimization based methods, probabilistic methods are used in the proposed method. Simultaneous Localization And Mapping(SLAM) techniques are adapted for video mosaicing. Probabilistic measures for the landmark locations are used to merge small images to create large scene. Experimental tests give promising results if the performance-complexity is considered at the same time
    corecore