3,169 research outputs found

    A knowledge graph-supported information fusion approach for multi-faceted conceptual modelling

    Get PDF
    It has become progressively more evident that a single data source is unable to comprehensively capture the variability of a multi-faceted concept, such as product design, driving behaviour or human trust, which has diverse semantic orientations. Therefore, multi-faceted conceptual modelling is often conducted based on multi-sourced data covering indispensable aspects, and information fusion is frequently applied to cope with the high dimensionality and data heterogeneity. The consideration of intra-facets relationships is also indispensable. In this context, a knowledge graph (KG), which can aggregate the relationships of multiple aspects by semantic associations, was exploited to facilitate the multi-faceted conceptual modelling based on heterogeneous and semantic-rich data. Firstly, rules of fault mechanism are extracted from the existing domain knowledge repository, and node attributes are extracted from multi-sourced data. Through abstraction and tokenisation of existing knowledge repository and concept-centric data, rules of fault mechanism were symbolised and integrated with the node attributes, which served as the entities for the concept-centric knowledge graph (CKG). Subsequently, the transformation of process data to a stack of temporal graphs was conducted under the CKG backbone. Lastly, the graph convolutional network (GCN) model was applied to extract temporal and attribute correlation features from the graphs, and a temporal convolution network (TCN) was built for conceptual modelling using these features. The effectiveness of the proposed approach and the close synergy between the KG-supported approach and multi-faceted conceptual modelling is demonstrated and substantiated in a case study using real-world data

    A review of differentiable digital signal processing for music and speech synthesis

    Get PDF
    The term “differentiable digital signal processing” describes a family of techniques in which loss function gradients are backpropagated through digital signal processors, facilitating their integration into neural networks. This article surveys the literature on differentiable audio signal processing, focusing on its use in music and speech synthesis. We catalogue applications to tasks including music performance rendering, sound matching, and voice transformation, discussing the motivations for and implications of the use of this methodology. This is accompanied by an overview of digital signal processing operations that have been implemented differentiably, which is further supported by a web book containing practical advice on differentiable synthesiser programming (https://intro2ddsp.github.io/). Finally, we highlight open challenges, including optimisation pathologies, robustness to real-world conditions, and design trade-offs, and discuss directions for future research

    Planetary Hinterlands:Extraction, Abandonment and Care

    Get PDF
    This open access book considers the concept of the hinterland as a crucial tool for understanding the global and planetary present as a time defined by the lasting legacies of colonialism, increasing labor precarity under late capitalist regimes, and looming climate disasters. Traditionally seen to serve a (colonial) port or market town, the hinterland here becomes a lens to attend to the times and spaces shaped and experienced across the received categories of the urban, rural, wilderness or nature. In straddling these categories, the concept of the hinterland foregrounds the human and more-than-human lively processes and forms of care that go on even in sites defined by capitalist extraction and political abandonment. Bringing together scholars from the humanities and social sciences, the book rethinks hinterland materialities, affectivities, and ecologies across places and cultural imaginations, Global North and South, urban and rural, and land and water

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Guided rewriting and constraint satisfaction for parallel GPU code generation

    Get PDF
    Graphics Processing Units (GPUs) are notoriously hard to optimise for manually due to their scheduling and memory hierarchies. What is needed are good automatic code generators and optimisers for such parallel hardware. Functional approaches such as Accelerate, Futhark and LIFT leverage a high-level algorithmic Intermediate Representation (IR) to expose parallelism and abstract the implementation details away from the user. However, producing efficient code for a given accelerator remains challenging. Existing code generators depend on the user input to choose a subset of hard-coded optimizations or automated exploration of implementation search space. The former suffers from the lack of extensibility, while the latter is too costly due to the size of the search space. A hybrid approach is needed, where a space of valid implementations is built automatically and explored with the aid of human expertise. This thesis presents a solution combining user-guided rewriting and automatically generated constraints to produce high-performance code. The first contribution is an automatic tuning technique to find a balance between performance and memory consumption. Leveraging its functional patterns, the LIFT compiler is empowered to infer tuning constraints and limit the search to valid tuning combinations only. Next, the thesis reframes parallelisation as a constraint satisfaction problem. Parallelisation constraints are extracted automatically from the input expression, and a solver is used to identify valid rewriting. The constraints truncate the search space to valid parallel mappings only by capturing the scheduling restrictions of the GPU in the context of a given program. A synchronisation barrier insertion technique is proposed to prevent data races and improve the efficiency of the generated parallel mappings. The final contribution of this thesis is the guided rewriting method, where the user encodes a design space of structural transformations using high-level IR nodes called rewrite points. These strongly typed pragmas express macro rewrites and expose design choices as explorable parameters. The thesis proposes a small set of reusable rewrite points to achieve tiling, cache locality, data reuse and memory optimisation. A comparison with the vendor-provided handwritten kernel ARM Compute Library and the TVM code generator demonstrates the effectiveness of this thesis' contributions. With convolution as a use case, LIFT-generated direct and GEMM-based convolution implementations are shown to perform on par with the state-of-the-art solutions on a mobile GPU. Overall, this thesis demonstrates that a functional IR yields well to user-guided and automatic rewriting for high-performance code generation

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Mining Butterflies in Streaming Graphs

    Get PDF
    This thesis introduces two main-memory systems sGrapp and sGradd for performing the fundamental analytic tasks of biclique counting and concept drift detection over a streaming graph. A data-driven heuristic is used to architect the systems. To this end, initially, the growth patterns of bipartite streaming graphs are mined and the emergence principles of streaming motifs are discovered. Next, the discovered principles are (a) explained by a graph generator called sGrow; and (b) utilized to establish the requirements for efficient, effective, explainable, and interpretable management and processing of streams. sGrow is used to benchmark stream analytics, particularly in the case of concept drift detection. sGrow displays robust realization of streaming growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. Extensive evaluations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp achieves mean absolute percentage error up to 0.05/0.14 for the cumulative butterfly count in streaming graphs with uniform/non-uniform temporal distribution and a processing throughput of 1.5 million data records per second. The throughput and estimation error of sGrapp are 160x higher and 0.02x lower than baselines. sGradd demonstrates an improving performance over time, achieves zero false detection rates when there is not any drift and when drift is already detected, and detects sequential drifts in zero to a few seconds after their occurrence regardless of drift intervals

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF
    corecore