875 research outputs found

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    Hardening Tor Hidden Services

    Get PDF
    Tor is an overlay anonymization network that provides anonymity for clients surfing the web but also allows hosting anonymous services called hidden services. These enable whistleblowers and political activists to express their opinion and resist censorship. Administrating a hidden service is not trivial and requires extensive knowledge because Tor uses a comprehensive protocol and relies on volunteers. Meanwhile, attackers can spend significant resources to decloak them. This thesis aims to improve the security of hidden services by providing practical guidelines and a theoretical architecture. First, vulnerabilities specific to hidden services are analyzed by conducting an academic literature review. To model realistic real-world attackers, court documents are analyzed to determine their procedures. Both literature reviews classify the identified vulnerabilities into general categories. Afterward, a risk assessment process is introduced, and existing risks for hidden services and their operators are determined. The main contributions of this thesis are practical guidelines for hidden service operators and a theoretical architecture. The former provides operators with a good overview of practices to mitigate attacks. The latter is a comprehensive infrastructure that significantly increases the security of hidden services and alleviates problems in the Tor protocol. Afterward, limitations and the transfer into practice are analyzed. Finally, future research possibilities are determined

    Design and Implementation of HD Wireless Video Transmission System Based on Millimeter Wave

    Get PDF
    With the improvement of optical fiber communication network construction and the improvement of camera technology, the video that the terminal can receive becomes clearer, with resolution up to 4K. Although optical fiber communication has high bandwidth and fast transmission speed, it is not the best solution for indoor short-distance video transmission in terms of cost, laying difficulty and speed. In this context, this thesis proposes to design and implement a multi-channel wireless HD video transmission system with high transmission performance by using the 60GHz millimeter wave technology, aiming to improve the bandwidth from optical nodes to wireless terminals and improve the quality of video transmission. This thesis mainly covers the following parts: (1) This thesis implements wireless video transmission algorithm, which is divided into wireless transmission algorithm and video transmission algorithm, such as 64QAM modulation and demodulation algorithm, H.264 video algorithm and YUV420P algorithm. (2) This thesis designs the hardware of wireless HD video transmission system, including network processing unit (NPU) and millimeter wave module. Millimeter wave module uses RWM6050 baseband chip and TRX-BF01 rf chip. This thesis will design the corresponding hardware circuit based on the above chip, such as 10Gb/s network port, PCIE. (3) This thesis realizes the software design of wireless HD video transmission system, selects FFmpeg and Nginx to build the sending platform of video transmission system on NPU, and realizes video multiplex transmission with Docker. On the receiving platform of video transmission, FFmpeg and Qt are selected to realize video decoding, and OpenGL is combined to realize video playback. (4) Finally, the thesis completed the wireless HD video transmission system test, including pressure test, Web test and application scenario test. It has been verified that its HD video wireless transmission system can transmit HD VR video with three-channel bit rate of 1.2GB /s, and its rate can reach up to 3.7GB /s, which meets the research goal

    Improving robustness of image recognition through artificial image augmentation

    Get PDF
    Deep learning based computer vision technologies can offer a number of advantages over manual labour inspection methods such as reduced operational costs and efficiency improvements. However, they are known to be unreliable in certain situations, especially when input images contain augmentations such as occlusion or distortion that computer vision models have not been trained on. While augmentations can be mitigated by controlling some situations, this is not always possible, especially in outdoor environments. To address this issue, one common approach is supplemental robustness training using augmented training data, which involves training models on images containing the expected augmentations to improve performance. However, this approach requires collection of a substantial volume of augmented images for each expected augmentation, making it time-consuming and costly depending on the difficulty involved in reproducing each augmentation. This thesis explores the viability of using artificially rendered augmentations on unaugmented images as a substitute for the manual collection and preparation of naturally augmented data for image recognition and object detection models. Specifically, this thesis recreates nine environmental augmentations that commonly occur within outdoor environments and evaluates their impact on model performance on three datasets. The findings of this thesis indicate potential for using artificially generated augmentations as substitutes for naturally occurring augmentations. It is anticipated that further research in this area will enable more reliable image recognition and object detection in less controllable environments, thus improving the results of these technologies in uncertain situations

    On the Effect of Channel Knowledge in Underwater Acoustic Communications: Estimation, Prediction and Protocol

    Get PDF
    Underwater acoustic communications are limited by the following channel impairments: time variability, narrow bandwidth, multipath, frequency selective fading and the Doppler effect. Orthogonal Frequency Division Modulation (OFDM) is recognized as an effective solution to such impairments, especially when optimally designed according to the propagation conditions. On the other hand, OFDM implementation requires accurate channel knowledge atboth transmitter and receiver sides. Long propagation delay may lead to outdated channel information. In this work, we present an adaptive OFDM scheme where channel state information is predicted through a Kalman-like filter so as to optimize communication parameters, including the cyclic prefix length. This mechanism aims to mitigate the variability of channel delay spread. This is cast in a protocol where channel estimation/prediction are jointly considered, so as to allow efficiency. The performance obtained through extensive simulations using real channels and interference show the effectiveness of the proposed scheme, both in terms of rate and reliability, at the expense of an increasing complexity. However, this solution is significantly preferable to the conventional mechanism, where channel estimation is performed only at the receiver, with channel coefficients sent back to the transmit node by means of frequent overhead signaling

    Fooling Thermal Infrared Detectors in Physical World

    Full text link
    Infrared imaging systems have a vast array of potential applications in pedestrian detection and autonomous driving, and their safety performance is of great concern. However, few studies have explored the safety of infrared imaging systems in real-world settings. Previous research has used physical perturbations such as small bulbs and thermal "QR codes" to attack infrared imaging detectors, but such methods are highly visible and lack stealthiness. Other researchers have used hot and cold blocks to deceive infrared imaging detectors, but this method is limited in its ability to execute attacks from various angles. To address these shortcomings, we propose a novel physical attack called adversarial infrared blocks (AdvIB). By optimizing the physical parameters of the adversarial infrared blocks, this method can execute a stealthy black-box attack on thermal imaging system from various angles. We evaluate the proposed method based on its effectiveness, stealthiness, and robustness. Our physical tests show that the proposed method achieves a success rate of over 80% under most distance and angle conditions, validating its effectiveness. For stealthiness, our method involves attaching the adversarial infrared block to the inside of clothing, enhancing its stealthiness. Additionally, we test the proposed method on advanced detectors, and experimental results demonstrate an average attack success rate of 51.2%, proving its robustness. Overall, our proposed AdvIB method offers a promising avenue for conducting stealthy, effective and robust black-box attacks on thermal imaging system, with potential implications for real-world safety and security applications

    Examining the Relationships Between Distance Education Students’ Self-Efficacy and Their Achievement

    Get PDF
    This study aimed to examine the relationships between students’ self-efficacy (SSE) and students’ achievement (SA) in distance education. The instruments were administered to 100 undergraduate students in a distance university who work as migrant workers in Taiwan to gather data, while their SA scores were obtained from the university. The semi-structured interviews for 8 participants consisted of questions that showed the specific conditions of SSE and SA. The findings of this study were reported as follows: There was a significantly positive correlation between targeted SSE (overall scales and general self-efficacy) and SA. Targeted students' self-efficacy effectively predicted their achievement; besides, general self- efficacy had the most significant influence. In the qualitative findings, four themes were extracted for those students with lower self-efficacy but higher achievement—physical and emotional condition, teaching and learning strategy, positive social interaction, and intrinsic motivation. Moreover, three themes were extracted for those students with moderate or higher self-efficacy but lower achievement—more time for leisure (not hard-working), less social interaction, and external excuses. Providing effective learning environments, social interactions, and teaching and learning strategies are suggested in distance education

    Exploiting Multimodal Information in Deep Learning

    Get PDF
    Humans are good at using multimodal information to perceive and to interact with the world. Such information includes visual, auditory, kinesthetic, etc. Despite the advancement in deep learning using single modality in the past decade, there are relatively fewer works focused on multimodal learning. Even with existing multimodal deep learning works, most of them focus on a small number of modalities. This dissertation will investigate various distinct forms of multi-modal learning: multiple visual modalities as input, audio-visual multimodal input, and visual and proprioceptive (kinesthetic) multimodal input. Specifically, in the first project we investigate synthesizing light fields from a single image and estimated depth. In the second project, we investigate face recognition for unconstrained videos with audio-visual multimodal inputs. Finally, we investigate learning to construct and use tools with visual, proprioceptive and kinesthetic multimodal inputs. In the first task, we investigate synthesizing light fields with a single RGB image and its estimated depth. Synthesizing novel views (light fields) from a single image is very challenging since the depth information is lost, and depth information is crucial for view synthesis. We propose to use a pre-trained model to estimate the depth, and then fuse the depth information together with the RGB image to generate the light fields. Our experiments showed that multimodal input (RGB image and depth) significantly improved the performance over the single image input. In the second task, we focus on learning face recognition for low quality videos. For low quality videos such as low-resolution online videos and surveillance videos, recognizing faces based on video frames alone is very challenging. We propose to use audio information in the video clip to aid in the face recognition task. To achieve this goal, we propose Audio-Visual Aggregation Network (AVAN) to aggregate audio features and visual features using an attention mechanism. Empirical results show that our approach using both visual and audio information significantly improves the face recognition accuracy on unconstrained videos. Finally, in the third task, we propose to use visual, proprioceptive and kinesthetic inputs to learn to construct and use tools. The use of tools in animals indicates high levels of cognitive capability, and, aside from humans, it is observed only in a small number of higher mammals and avian species, and constructing novel tools is an even more challenging task. Learning this task with only visual input is challenging, therefore, we propose to use visual and proprioceptive (kinesthetic) inputs to accelerate the learning. We build a physically simulated environment for tool construction task. We also introduce a hierarchical reinforcement learning approach to learn to construct tools and reach the target, without any prior knowledge. The main contribution of this dissertation is in the investigation of multiple scenarios where multimodal processing leads to enhanced performance. We expect the specific methods developed in this work, such as the extraction of hidden modalities (depth), use of attention, and hierarchical rewards, to help us better understand multimodal processing in deep learning
    • 

    corecore