1,814 research outputs found

    Perceptual Video Super Resolution with Enhanced Temporal Consistency

    Full text link
    With the advent of perceptual loss functions, new possibilities in super-resolution have emerged, and we currently have models that successfully generate near-photorealistic high-resolution images from their low-resolution observations. Up to now, however, such approaches have been exclusively limited to single image super-resolution. The application of perceptual loss functions on video processing still entails several challenges, mostly related to the lack of temporal consistency of the generated images, i.e., flickering artifacts. In this work, we present a novel adversarial recurrent network for video upscaling that is able to produce realistic textures in a temporally consistent way. The proposed architecture naturally leverages information from previous frames due to its recurrent architecture, i.e. the input to the generator is composed of the low-resolution image and, additionally, the warped output of the network at the previous step. Together with a video discriminator, we also propose additional loss functions to further reinforce temporal consistency in the generated sequences. The experimental validation of our algorithm shows the effectiveness of our approach which obtains images with high perceptual quality and improved temporal consistency.Comment: Major revision and improvement of the manuscript: New network architecture, new loss function and extended experiment

    Fast Spatio-Temporal Residual Network for Video Super-Resolution

    Full text link
    Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However, straight utilizing 3D convolutions may lead to an excessively high computational complexity which restricts the depth of video SR models and thus undermine the performance. In this paper, we present a novel fast spatio-temporal residual network (FSTRN) to adopt 3D convolutions for the video SR task in order to enhance the performance while maintaining a low computational load. Specifically, we propose a fast spatio-temporal residual block (FRB) that divide each 3D filter to the product of two 3D filters, which have considerably lower dimensions. Furthermore, we design a cross-space residual learning that directly links the low-resolution space and the high-resolution space, which can greatly relieve the computational burden on the feature fusion and up-scaling parts. Extensive evaluations and comparisons on benchmark datasets validate the strengths of the proposed approach and demonstrate that the proposed network significantly outperforms the current state-of-the-art methods.Comment: To appear in CVPR 201

    DAVANet: Stereo Deblurring with View Aggregation

    Full text link
    Nowadays stereo cameras are more commonly adopted in emerging devices such as dual-lens smartphones and unmanned aerial vehicles. However, they also suffer from blurry images in dynamic scenes which leads to visual discomfort and hampers further image processing. Previous works have succeeded in monocular deblurring, yet there are few studies on deblurring for stereoscopic images. By exploiting the two-view nature of stereo images, we propose a novel stereo image deblurring network with Depth Awareness and View Aggregation, named DAVANet. In our proposed network, 3D scene cues from the depth and varying information from two views are incorporated, which help to remove complex spatially-varying blur in dynamic scenes. Specifically, with our proposed fusion network, we integrate the bidirectional disparities estimation and deblurring into a unified framework. Moreover, we present a large-scale multi-scene dataset for stereo deblurring, containing 20,637 blurry-sharp stereo image pairs from 135 diverse sequences and their corresponding bidirectional disparities. The experimental results on our dataset demonstrate that DAVANet outperforms state-of-the-art methods in terms of accuracy, speed, and model size.Comment: CVPR 2019 (Oral

    Recurrent Back-Projection Network for Video Super-Resolution

    Full text link
    We proposed a novel architecture for the problem of video super-resolution. We integrate spatial and temporal contexts from continuous video frames using a recurrent encoder-decoder module, that fuses multi-frame information with the more traditional, single frame super-resolution path for the target frame. In contrast to most prior work where frames are pooled together by stacking or warping, our model, the Recurrent Back-Projection Network (RBPN) treats each context frame as a separate source of information. These sources are combined in an iterative refinement framework inspired by the idea of back-projection in multiple-image super-resolution. This is aided by explicitly representing estimated inter-frame motion with respect to the target, rather than explicitly aligning frames. We propose a new video super-resolution benchmark, allowing evaluation at a larger scale and considering videos in different motion regimes. Experimental results demonstrate that our RBPN is superior to existing methods on several datasets.Comment: To appear in CVPR201

    Deep Predictive Video Compression with Bi-directional Prediction

    Full text link
    Recently, deep image compression has shown a big progress in terms of coding efficiency and image quality improvement. However, relatively less attention has been put on video compression using deep learning networks. In the paper, we first propose a deep learning based bi-predictive coding network, called BP-DVC Net, for video compression. Learned from the lesson of the conventional video coding, a B-frame coding structure is incorporated in our BP-DVC Net. While the bi-predictive coding in the conventional video codecs requires to transmit to decoder sides the motion vectors for block motion and the residues from prediction, our BP-DVC Net incorporates optical flow estimation networks in both encoder and decoder sides so as not to transmit the motion information to the decoder sides for coding efficiency improvement. Also, a bi-prediction network in the BP-DVC Net is proposed and used to precisely predict the current frame and to yield the resulting residues as small as possible. Furthermore, our BP-DVC Net allows for the compressive feature maps to be entropy-coded using the temporal context among the feature maps of adjacent frames. The BP-DVC Net has an end-to-end video compression architecture with newly designed flow and prediction losses. Experimental results show that the compression performance of our proposed method is comparable to those of H.264, HEVC in terms of PSNR and MS-SSIM

    Super-Resolution via Deep Learning

    Full text link
    The recent phenomenal interest in convolutional neural networks (CNNs) must have made it inevitable for the super-resolution (SR) community to explore its potential. The response has been immense and in the last three years, since the advent of the pioneering work, there appeared too many works not to warrant a comprehensive survey. This paper surveys the SR literature in the context of deep learning. We focus on the three important aspects of multimedia - namely image, video and multi-dimensions, especially depth maps. In each case, first relevant benchmarks are introduced in the form of datasets and state of the art SR methods, excluding deep learning. Next is a detailed analysis of the individual works, each including a short description of the method and a critique of the results with special reference to the benchmarking done. This is followed by minimum overall benchmarking in the form of comparison on some common dataset, while relying on the results reported in various works

    Self-Enhanced Convolutional Network for Facial Video Hallucination

    Full text link
    As a domain-specific super-resolution problem, facial image hallucination has enjoyed a series of breakthroughs thanks to the advances of deep convolutional neural networks. However, the direct migration of existing methods to video is still difficult to achieve good performance due to its lack of alignment and consistency modelling in temporal domain. Taking advantage of high inter-frame dependency in videos, we propose a self-enhanced convolutional network for facial video hallucination. It is implemented by making full usage of preceding super-resolved frames and a temporal window of adjacent low-resolution frames. Specifically, the algorithm first obtains the initial high-resolution inference of each frame by taking into consideration a sequence of consecutive low-resolution inputs through temporal consistency modelling. It further recurrently exploits the reconstructed results and intermediate features of a sequence of preceding frames to improve the initial super-resolution of the current frame by modelling the coherence of structural facial features across frames. Quantitative and qualitative evaluations demonstrate the superiority of the proposed algorithm against state-of-the-art methods. Moreover, our algorithm also achieves excellent performance in the task of general video super-resolution in a single-shot setting

    MFQE 2.0: A New Approach for Multi-frame Quality Enhancement on Compressed Video

    Full text link
    The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consecutive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we firstly develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code is available at https://github.com/RyanXingQL/MFQEv2.0.git.Comment: Accepted to TPAMI in September, 2019. v6 updates: correct units in Fig. 11; correct author info; delete bio photos. arXiv admin note: text overlap with arXiv:1803.0468

    Spatiotemporal Modeling for Crowd Counting in Videos

    Full text link
    Region of Interest (ROI) crowd counting can be formulated as a regression problem of learning a mapping from an image or a video frame to a crowd density map. Recently, convolutional neural network (CNN) models have achieved promising results for crowd counting. However, even when dealing with video data, CNN-based methods still consider each video frame independently, ignoring the strong temporal correlation between neighboring frames. To exploit the otherwise very useful temporal information in video sequences, we propose a variant of a recent deep learning model called convolutional LSTM (ConvLSTM) for crowd counting. Unlike the previous CNN-based methods, our method fully captures both spatial and temporal dependencies. Furthermore, we extend the ConvLSTM model to a bidirectional ConvLSTM model which can access long-range information in both directions. Extensive experiments using four publicly available datasets demonstrate the reliability of our approach and the effectiveness of incorporating temporal information to boost the accuracy of crowd counting. In addition, we also conduct some transfer learning experiments to show that once our model is trained on one dataset, its learning experience can be transferred easily to a new dataset which consists of only very few video frames for model adaptation.Comment: Accepted by ICCV 201

    Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution

    Full text link
    In this paper, we explore the space-time video super-resolution task, which aims to generate a high-resolution (HR) slow-motion video from a low frame rate (LFR), low-resolution (LR) video. A simple solution is to split it into two sub-tasks: video frame interpolation (VFI) and video super-resolution (VSR). However, temporal interpolation and spatial super-resolution are intra-related in this task. Two-stage methods cannot fully take advantage of the natural property. In addition, state-of-the-art VFI or VSR networks require a large frame-synthesis or reconstruction module for predicting high-quality video frames, which makes the two-stage methods have large model sizes and thus be time-consuming. To overcome the problems, we propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video. Rather than synthesizing missing LR video frames as VFI networks do, we firstly temporally interpolate LR frame features in missing LR video frames capturing local temporal contexts by the proposed feature temporal interpolation network. Then, we propose a deformable ConvLSTM to align and aggregate temporal information simultaneously for better leveraging global temporal contexts. Finally, a deep reconstruction network is adopted to predict HR slow-motion video frames. Extensive experiments on benchmark datasets demonstrate that the proposed method not only achieves better quantitative and qualitative performance but also is more than three times faster than recent two-stage state-of-the-art methods, e.g., DAIN+EDVR and DAIN+RBPN.Comment: This work is accepted in CVPR 2020. The source code and pre-trained model are available on https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020. 12 pages, 10 figure
    • …
    corecore