2,183 research outputs found

    The low-rank decomposition of correlation-enhanced superpixels for video segmentation

    Get PDF
    Low-rank decomposition (LRD) is an effective scheme to explore the affinity among superpixels in the image and video segmentation. However, the superpixel feature collected based on colour, shape, and texture may be rough, incompatible, and even conflicting if multiple features extracted in various manners are vectored and stacked straight together. It poses poor correlation, inconsistence on intra-category superpixels, and similarities on inter-category superpixels. This paper proposes a correlation-enhanced superpixel for video segmentation in the framework of LRD. Our algorithm mainly consists of two steps, feature analysis to establish the initial affinity among superpixels, followed by construction of a correlation-enhanced superpixel. This work is very helpful to perform LRD effectively and find the affinity accurately and quickly. Experiments conducted on datasets validate the proposed method. Comparisons with the state-of-the-art algorithms show higher speed and more precise in video segmentation

    Multi-Cue Structure Preserving MRF for Unconstrained Video Segmentation

    Full text link
    Video segmentation is a stepping stone to understanding video context. Video segmentation enables one to represent a video by decomposing it into coherent regions which comprise whole or parts of objects. However, the challenge originates from the fact that most of the video segmentation algorithms are based on unsupervised learning due to expensive cost of pixelwise video annotation and intra-class variability within similar unconstrained video classes. We propose a Markov Random Field model for unconstrained video segmentation that relies on tight integration of multiple cues: vertices are defined from contour based superpixels, unary potentials from temporal smooth label likelihood and pairwise potentials from global structure of a video. Multi-cue structure is a breakthrough to extracting coherent object regions for unconstrained videos in absence of supervision. Our experiments on VSB100 dataset show that the proposed model significantly outperforms competing state-of-the-art algorithms. Qualitative analysis illustrates that video segmentation result of the proposed model is consistent with human perception of objects

    Geodesic Distance Histogram Feature for Video Segmentation

    Full text link
    This paper proposes a geodesic-distance-based feature that encodes global information for improved video segmentation algorithms. The feature is a joint histogram of intensity and geodesic distances, where the geodesic distances are computed as the shortest paths between superpixels via their boundaries. We also incorporate adaptive voting weights and spatial pyramid configurations to include spatial information into the geodesic histogram feature and show that this further improves results. The feature is generic and can be used as part of various algorithms. In experiments, we test the geodesic histogram feature by incorporating it into two existing video segmentation frameworks. This leads to significantly better performance in 3D video segmentation benchmarks on two datasets

    Joint Optical Flow and Temporally Consistent Semantic Segmentation

    Full text link
    The importance and demands of visual scene understanding have been steadily increasing along with the active development of autonomous systems. Consequently, there has been a large amount of research dedicated to semantic segmentation and dense motion estimation. In this paper, we propose a method for jointly estimating optical flow and temporally consistent semantic segmentation, which closely connects these two problem domains and leverages each other. Semantic segmentation provides information on plausible physical motion to its associated pixels, and accurate pixel-level temporal correspondences enhance the accuracy of semantic segmentation in the temporal domain. We demonstrate the benefits of our approach on the KITTI benchmark, where we observe performance gains for flow and segmentation. We achieve state-of-the-art optical flow results, and outperform all published algorithms by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201
    corecore