243 research outputs found

    Video Mining with Frequent Itemset Configurations

    Get PDF
    International audienceWe present a method for mining frequently occurring objects and scenes from videos. Object candidates are detected by finding recurring spatial arrangements of affine covariant regions. Our mining method is based on the class of frequent itemset mining algorithms, which have proven their efficiency in other domains, but have not been applied to video mining before. In this work we show how to express vector-quantized features and their spatial relations as itemsets. Furthermore, a fast motion segmentation method is introduced as an attention filter for the mining algorithm. Results are shown on real world data consisting of music video clips

    DRS: Dynamic Resource Scheduling for Real-Time Analytics over Fast Streams

    Full text link
    In a data stream management system (DSMS), users register continuous queries, and receive result updates as data arrive and expire. We focus on applications with real-time constraints, in which the user must receive each result update within a given period after the update occurs. To handle fast data, the DSMS is commonly placed on top of a cloud infrastructure. Because stream properties such as arrival rates can fluctuate unpredictably, cloud resources must be dynamically provisioned and scheduled accordingly to ensure real-time response. It is quite essential, for the existing systems or future developments, to possess the ability of scheduling resources dynamically according to the current workload, in order to avoid wasting resources, or failing in delivering correct results on time. Motivated by this, we propose DRS, a novel dynamic resource scheduler for cloud-based DSMSs. DRS overcomes three fundamental challenges: (a) how to model the relationship between the provisioned resources and query response time (b) where to best place resources; and (c) how to measure system load with minimal overhead. In particular, DRS includes an accurate performance model based on the theory of \emph{Jackson open queueing networks} and is capable of handling \emph{arbitrary} operator topologies, possibly with loops, splits and joins. Extensive experiments with real data confirm that DRS achieves real-time response with close to optimal resource consumption.Comment: This is the our latest version with certain modificatio

    Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features

    Full text link
    TThe goal of our work is to discover dominant objects in a very general setting where only a single unlabeled image is given. This is far more challenge than typical co-localization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Location Mining (OLM), which exploits the advantages of data mining and feature representation of pre-trained convolutional neural networks (CNNs). Specifically, we first convert the feature maps from a pre-trained CNN model into a set of transactions, and then discovers frequent patterns from transaction database through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions, typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful patterns. Extensive experiments on a variety of benchmarks demonstrate that OLM achieves competitive localization performance compared with the state-of-the-art methods. We also evaluate our approach compared with unsupervised saliency detection methods and achieves competitive results on seven benchmark datasets. Moreover, we conduct experiments on fine-grained classification to show that our proposed method can locate the entire object and parts accurately, which can benefit to improving the classification results significantly

    Mining Mid-level Features for Action Recognition Based on Effective Skeleton Representation

    Get PDF
    Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more discriminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally, frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D

    Mining Mid-level Features for Image Classification

    No full text
    International audienceMid-level or semi-local features learnt using class-level information are potentially more distinctive than the traditional low-level local features constructed in a purely bottom-up fashion. At the same time they preserve some of the robustness properties with respect to occlusions and image clutter. In this paper we propose a new and effective scheme for extracting mid-level features for image classification, based on relevant pattern mining. In par- ticular, we mine relevant patterns of local compositions of densely sampled low-level features. We refer to the new set of obtained patterns as Frequent Local Histograms or FLHs. During this process, we pay special attention to keeping all the local histogram information and to selecting the most relevant reduced set of FLH patterns for classification. The careful choice of the visual primitives and an extension to exploit both local and global spatial information allow us to build powerful bag-of-FLH-based image representations. We show that these bag-of-FLHs are more discriminative than traditional bag-of-words and yield state-of-the-art results on various image classification benchmarks, including Pascal VOC

    A new data stream mining algorithm for interestingness-rich association rules

    Get PDF
    Frequent itemset mining and association rule generation is a challenging task in data stream. Even though, various algorithms have been proposed to solve the issue, it has been found out that only frequency does not decides the significance interestingness of the mined itemset and hence the association rules. This accelerates the algorithms to mine the association rules based on utility i.e. proficiency of the mined rules. However, fewer algorithms exist in the literature to deal with the utility as most of them deals with reducing the complexity in frequent itemset/association rules mining algorithm. Also, those few algorithms consider only the overall utility of the association rules and not the consistency of the rules throughout a defined number of periods. To solve this issue, in this paper, an enhanced association rule mining algorithm is proposed. The algorithm introduces new weightage validation in the conventional association rule mining algorithms to validate the utility and its consistency in the mined association rules. The utility is validated by the integrated calculation of the cost/price efficiency of the itemsets and its frequency. The consistency validation is performed at every defined number of windows using the probability distribution function, assuming that the weights are normally distributed. Hence, validated and the obtained rules are frequent and utility efficient and their interestingness are distributed throughout the entire time period. The algorithm is implemented and the resultant rules are compared against the rules that can be obtained from conventional mining algorithms

    Data Mining Algorithms for Internet Data: from Transport to Application Layer

    Get PDF
    Nowadays we live in a data-driven world. Advances in data generation, collection and storage technology have enabled organizations to gather data sets of massive size. Data mining is a discipline that blends traditional data analysis methods with sophisticated algorithms to handle the challenges posed by these new types of data sets. The Internet is a complex and dynamic system with new protocols and applications that arise at a constant pace. All these characteristics designate the Internet a valuable and challenging data source and application domain for a research activity, both looking at Transport layer, analyzing network tra c flows, and going up to Application layer, focusing on the ever-growing next generation web services: blogs, micro-blogs, on-line social networks, photo sharing services and many other applications (e.g., Twitter, Facebook, Flickr, etc.). In this thesis work we focus on the study, design and development of novel algorithms and frameworks to support large scale data mining activities over huge and heterogeneous data volumes, with a particular focus on Internet data as data source and targeting network tra c classification, on-line social network analysis, recommendation systems and cloud services and Big data

    Expressive generalized itemsets

    Get PDF
    Generalized itemset mining is a powerful tool to discover multiple-level correlations among the analyzed data. A taxonomy is used to aggregate data items into higher-level concepts and to discover frequent recurrences among data items at different granularity levels. However, since traditional high-level itemsets may also represent the knowledge covered by their lower-level frequent descendant itemsets, the expressiveness of high-level itemsets can be rather limited. To overcome this issue, this article proposes two novel itemset types, called Expressive Generalized Itemset (EGI) and Maximal Expressive Generalized Itemset (Max-EGI), in which the frequency of occurrence of a high-level itemset is evaluated only on the portion of data not yet covered by any of its frequent descendants. Specifically, EGI s represent, at a high level of abstraction, the knowledge associated with sets of infrequent itemsets, while Max-EGIs compactly represent all the infrequent descendants of a generalized itemset. Furthermore, we also propose an algorithm to discover Max-EGIs at the top of the traditionally mined itemsets. Experiments, performed on both real and synthetic datasets, demonstrate the effectiveness, efficiency, and scalability of the proposed approac

    New Spark solutions for distributed frequent itemset and association rule mining algorithms

    Get PDF
    Funding for open access publishing: Universidad de Gran- ada/CBUA. The research reported in this paper was partially sup- ported by the BIGDATAMED project, which has received funding from the Andalusian Government (Junta de Andalucı ́a) under grant agreement No P18-RT-1765, by Grants PID2021-123960OB-I00 and Grant TED2021-129402B-C21 funded by Ministerio de Ciencia e Innovacio ́n and, by ERDF A way of making Europe and by the European Union NextGenerationEU. In addition, this work has been partially supported by the Ministry of Universities through the EU- funded Margarita Salas programme NextGenerationEU. Funding for open access charge: Universidad de Granada/CBUAThe large amount of data generated every day makes necessary the re-implementation of new methods capable of handle with massive data efficiently. This is the case of Association Rules, an unsupervised data mining tool capable of extracting information in the form of IF-THEN patterns. Although several methods have been proposed for the extraction of frequent itemsets (previous phase before mining association rules) in very large databases, the high computational cost and lack of memory remains a major problem to be solved when processing large data. Therefore, the aim of this paper is three fold: (1) to review existent algorithms for frequent itemset and association rule mining, (2)to develop new efficient frequent itemset Big Data algorithms using distributive computation, as well as a new association rule mining algorithm in Spark, and (3) to compare the proposed algorithms with the existent proposals varying the number of transactions and the number of items. To this purpose, we have used the Spark platform which has been demonstrated to outperform existing distributive algorithmic implementations.Universidad de Granada/CBUAJunta de Andalucia P18-RT-1765Ministry of Science and Innovation, Spain (MICINN) Instituto de Salud Carlos III Spanish Government PID2021-123960OB-I00, TED2021-129402B-C21ERDF A way of making EuropeEuropean Union NextGenerationEUMinistry of Universities through the E
    • 

    corecore