25,643 research outputs found

    User-interface to a CCTV video search system

    Get PDF
    The proliferation of CCTV surveillance systems creates a problem of how to effectively navigate and search the resulting video archive, in a variety of security scenarios. We are concerned here with a situation where a searcher must locate all occurrences of a given person or object within a specified timeframe and with constraints on which camera(s) footage is valid to search. Conventional approaches based on browsing time/camera based combinations are inadequate. We advocate using automatically detected video objects as a basis for search, linking and browsing. In this paper we present a system under development based on users interacting with detected video objects. We outline the suite of technologies needed to achieve such a system and for each we describe where we are in terms of realizing those technologies. We also present a system interface to this system, designed with user needs and user tasks in mind

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    A study of user perceptions of the relationship between bump-mapped and non-bump-mapped materials, and lighting intensity in a real-time virtual environment

    Get PDF
    The video and computer games industry has taken full advantage of the human sense of vision by producing games that utilize complex high-resolution textures and materials, and lighting technique. This results to the creation of an almost life-like real-time 3D virtual environment that can immerse the end-users. One of the visual techniques used is real-time display of bump-mapped materials. However, this sense of visual phenomenon has yet to be fully utilized for 3D design visualization in the architecture and construction domain. Virtual environments developed in the architecture and construction domain are often basic and use low-resolution images, which under represent the real physical environment. Such virtual environment is seen as being non-realistic to the user resulting in a misconception of the actual potential of it as a tool for 3D design visualization. A study was conducted to evaluate whether subjects can see the difference between bump-mapped and nonbump-mapped materials in different lighting conditions. The study utilized a real-time 3D virtual environment that was created using a custom-developed software application tool called BuildITC4. BuildITC4 was developed based upon the C4Engine which is classified as a next-generation 3D Game Engine. A total of thirty-five subjects were exposed to the virtual environment and were asked to compare the various types of material in different lighting conditions. The number of lights activated, the lighting intensity, and the materials used in the virtual environment were all interactive and changeable in real-time. The goal is to study how subjects perceived bump-mapped and non-bump mapped materials, and how different lighting conditions affect realistic representation. Results from this study indicate that subjects could tell the difference between the bump-mapped and non-bump mapped materials, and how different material reacts to different lighting condition

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Statistical Analysis of Dynamic Actions

    Get PDF
    Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents
    corecore